Persistent Link:
http://hdl.handle.net/10150/607491
Title:
IMPACT OF NETWORKED DATA ACQUISITION SYSTEMS ON TRANSDUCERS
Author:
Eccles, Lee H.
Affiliation:
Boeing Commercial Airplanes
Issue Date:
2002-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Transducers have traditionally been incorporated into data systems by connecting the transducer to a signal conditioner that is then connected to a multiplexer with an Analog-to-Digital Converter (ADC). The signal conditioning, multiplexer and the ADC are usually included within the same assembly that is called a Data Acquisition Unit (DAU) or an encoder. A network centric data system allows the same architecture to be used if the interface to the encoder is changed to be a network interface. However, a network centric architecture allows other options as well. The signal conditioning and ADC can be included within the same package as the transducer and the assembly can be interfaced to the network. When this is combined with the processing capability now available, a whole new range of possibilities present themselves. The transducer can now be digitally processed to provide a linear output, it can be converted to Engineering Units, digitally filtered or have a host of other functions performed within the housing that contains the transducer. However, the network centric approach does not produce these advantages without some disadvantages. The major problem that needs to be solved is how we time stamp the data. With the encoder we could time stamp the PCM frame and be able to determine the time that a sample was taken from that information. Even in systems that convert the encoder to have a network interface, the time stamp needs to be affixed to the data in the encoder. With a network centric approach, the sample can be taken in the transducer and how to time stamp it becomes a real problem. This is a problem that must be considered at the system level. Some method of making time available at a low enough level in the system to allow transducer outputs to be time stamped is either a network issue or it requires a separate interface.
Keywords:
Transducers; Smart Sensors; Network Centric; Data Acquisition; Fieldbus; PCM
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleIMPACT OF NETWORKED DATA ACQUISITION SYSTEMS ON TRANSDUCERSen_US
dc.contributor.authorEccles, Lee H.en
dc.contributor.departmentBoeing Commercial Airplanesen
dc.date.issued2002-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractTransducers have traditionally been incorporated into data systems by connecting the transducer to a signal conditioner that is then connected to a multiplexer with an Analog-to-Digital Converter (ADC). The signal conditioning, multiplexer and the ADC are usually included within the same assembly that is called a Data Acquisition Unit (DAU) or an encoder. A network centric data system allows the same architecture to be used if the interface to the encoder is changed to be a network interface. However, a network centric architecture allows other options as well. The signal conditioning and ADC can be included within the same package as the transducer and the assembly can be interfaced to the network. When this is combined with the processing capability now available, a whole new range of possibilities present themselves. The transducer can now be digitally processed to provide a linear output, it can be converted to Engineering Units, digitally filtered or have a host of other functions performed within the housing that contains the transducer. However, the network centric approach does not produce these advantages without some disadvantages. The major problem that needs to be solved is how we time stamp the data. With the encoder we could time stamp the PCM frame and be able to determine the time that a sample was taken from that information. Even in systems that convert the encoder to have a network interface, the time stamp needs to be affixed to the data in the encoder. With a network centric approach, the sample can be taken in the transducer and how to time stamp it becomes a real problem. This is a problem that must be considered at the system level. Some method of making time available at a low enough level in the system to allow transducer outputs to be time stamped is either a network issue or it requires a separate interface.en
dc.subjectTransducersen
dc.subjectSmart Sensorsen
dc.subjectNetwork Centricen
dc.subjectData Acquisitionen
dc.subjectFieldbusen
dc.subjectPCMen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607491en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.