Persistent Link:
http://hdl.handle.net/10150/607341
Title:
SIDEWINDER MISSILE GPS RECEIVER TESTS
Author:
Meyer, Steven J.
Affiliation:
Naval Air Warfare Center Weapons Division
Issue Date:
1999-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The use of Global Positioning System (GPS) receivers as a source to provide Time Space and Position Information (TSPI), and Miss Distance Indication (MDI) data in Test and Evaluation (T&E) applications is being considered. Specifically, GPS receivers are being evaluated to determine their usefulness as a sensor in a Sidewinder missile telemetry system (AN/DKT-80). Initial testing has indicated that position information generated from a GPS receiver can provide significantly better position data than a radar tracking system when using Double Differential error correction techniques. This concept requires a GPS reference station to be located in the general proximity of the Telemetry data-receiving site. Software has been developed that will compare GPS data from the airborne telemetry system to the GPS reference station and display a real-time TSPI solution. This software will also provide MDI information from two different airborne sources that are equipped with GPS receivers (missile and drone). To prove out this concept, a Commercial Off the Shelf (COTS) Commercially/Available (C/A) code GPS receiver was integrated into the AN/DKT-80 Sidewinder telemetry system (TM). A MQM-107 drone was instrumented with the same GPS receiver, as was a ground based reference station. A simple TM was developed for the drone that telemeters only the GPS data. The modified AN/DKT-80 system incorporated an Inertial Measurement Unit (IMU) into the design. Post processing software was developed that will integrate the IMU information with the GPS data so accurate position can be generated if the GPS data was momentarily lost. A missile firing is scheduled for the spring of 1999 to prove this concept.
Keywords:
Global Positioning System (GPS); Time; Space; Position Information (TSPI); Miss Distance Indication (MDI); missile telemetry
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSIDEWINDER MISSILE GPS RECEIVER TESTSen_US
dc.contributor.authorMeyer, Steven J.en
dc.contributor.departmentNaval Air Warfare Center Weapons Divisionen
dc.date.issued1999-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe use of Global Positioning System (GPS) receivers as a source to provide Time Space and Position Information (TSPI), and Miss Distance Indication (MDI) data in Test and Evaluation (T&E) applications is being considered. Specifically, GPS receivers are being evaluated to determine their usefulness as a sensor in a Sidewinder missile telemetry system (AN/DKT-80). Initial testing has indicated that position information generated from a GPS receiver can provide significantly better position data than a radar tracking system when using Double Differential error correction techniques. This concept requires a GPS reference station to be located in the general proximity of the Telemetry data-receiving site. Software has been developed that will compare GPS data from the airborne telemetry system to the GPS reference station and display a real-time TSPI solution. This software will also provide MDI information from two different airborne sources that are equipped with GPS receivers (missile and drone). To prove out this concept, a Commercial Off the Shelf (COTS) Commercially/Available (C/A) code GPS receiver was integrated into the AN/DKT-80 Sidewinder telemetry system (TM). A MQM-107 drone was instrumented with the same GPS receiver, as was a ground based reference station. A simple TM was developed for the drone that telemeters only the GPS data. The modified AN/DKT-80 system incorporated an Inertial Measurement Unit (IMU) into the design. Post processing software was developed that will integrate the IMU information with the GPS data so accurate position can be generated if the GPS data was momentarily lost. A missile firing is scheduled for the spring of 1999 to prove this concept.en
dc.subjectGlobal Positioning System (GPS)en
dc.subjectTimeen
dc.subjectSpaceen
dc.subjectPosition Information (TSPI)en
dc.subjectMiss Distance Indication (MDI)en
dc.subjectmissile telemetryen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607341en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.