Persistent Link:
http://hdl.handle.net/10150/607042
Title:
High Speed, High Density Digital Recording
Author:
Isabeau, John G.
Affiliation:
Data Recording Systems, Inc.
Issue Date:
1971-09
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The wide signal bandwidth attainable with the 960 inch per second longitudinal tape transport, combined with high density recording at about 20,000 bits per inch provide a multichannel 20 Megabit/second recorder with a 64:1 time expansion capability. The tape transport mechanism consists of two solid, flangeless tape packs placed in direct contact with a large capstan. Stability of the tape movement is achieved by use of a control system which provides instantaneous adjustment of the pack contact forces as a function of direction, velocity, acceleration and pack diameter. This results in full versatility when programming the transport motion. The high density digital signal is phase encoded and processed through the recorder as an analog signal, then is demodulated using a phase lock loop to recover the clock. The sample and hold phase comparator controls a VCO at a fixed nominal frequency, followed by a divider. This configuration permits operation at all bit frequencies in a 128:1 range and allows the clock to coast through a 50 bit dropout without bit slip. Demonstrated bit error rate is 10⁻⁶ maximum.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleHigh Speed, High Density Digital Recordingen_US
dc.contributor.authorIsabeau, John G.en
dc.contributor.departmentData Recording Systems, Inc.en
dc.date.issued1971-09en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe wide signal bandwidth attainable with the 960 inch per second longitudinal tape transport, combined with high density recording at about 20,000 bits per inch provide a multichannel 20 Megabit/second recorder with a 64:1 time expansion capability. The tape transport mechanism consists of two solid, flangeless tape packs placed in direct contact with a large capstan. Stability of the tape movement is achieved by use of a control system which provides instantaneous adjustment of the pack contact forces as a function of direction, velocity, acceleration and pack diameter. This results in full versatility when programming the transport motion. The high density digital signal is phase encoded and processed through the recorder as an analog signal, then is demodulated using a phase lock loop to recover the clock. The sample and hold phase comparator controls a VCO at a fixed nominal frequency, followed by a divider. This configuration permits operation at all bit frequencies in a 128:1 range and allows the clock to coast through a 50 bit dropout without bit slip. Demonstrated bit error rate is 10⁻⁶ maximum.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607042en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.