Persistent Link:
http://hdl.handle.net/10150/606836
Title:
Cost Beneficial Solution for High Rate Data Processing
Author:
Mirchandani, Chandru; Fisher, David; Ghuman, Parminder
Affiliation:
Lockheed-Martin Space Mission Systems; Stinger Ghaffarian Technologies; NASA
Issue Date:
1999-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
GSFC in keeping with the tenets of NASA has been aggressively investigating new technologies for spacecraft and ground communications and processing. The application of these technologies, together with standardized telemetry formats, make it possible to build systems that provide high-performance at low cost in a short development cycle. The High Rate Telemetry Acquisition System (HRTAS) Prototype is one such effort that has validated Goddard's push towards faster, better and cheaper. The HRTAS system architecture is based on the Peripheral Component Interconnect (PCI) bus and VLSI Application-Specific Integrated Circuits (ASICs). These ASICs perform frame synchronization, bit-transition density decoding, cyclic redundancy code (CRC) error checking, Reed-Solomon error detection/correction, data unit sorting, packet extraction, annotation and other service processing. This processing in performed at rates of up to and greater than 150 Mbps sustained using a high-end performance workstation running standard UNIX O/S, (DEC 4100 with DEC UNIX or better). ASICs are also used for the digital reception of Intermediate Frequency (IF) telemetry as well as the spacecraft command interface for commands and data simulations. To improve the efficiency of the back-end processing, the level zero processing sorting element is being developed. This will provide a complete hardware solution to extracting and sorting source data units and making these available in separate files on a remote disk system. Research is on going to extend this development to higher levels of the science data processing pipeline. The fact that level 1 and higher processing is instrument dependent; an acceleration approach utilizing ASICs is not feasible. The advent of field programmable gate array (FPGA) based computing, referred to as adaptive or reconfigurable computing, provides a processing performance close to ASIC levels while maintaining much of the programmability of traditional microprocessor based systems. This adaptive computing paradigm has been successfully demonstrated and its cost performance validated, to make it a viable technology for the level one and higher processing element for the HRTAS. Higher levels of processing are defined as the extraction of useful information from source telemetry data. This information has to be made available to the science data user in a very short period of time. This paper will describe this low cost solution for high rate data processing at level one and higher processing levels. The paper will further discuss the cost-benefit of this technology in terms of cost, schedule, reliability and performance.
Keywords:
Telemetry; frame synchronization; Reed-Solomon error detection and correction; service processing; CCSDS; low cost platforms; Application Specific Integrated Circuits (ASICs); Field Programmable Gate Arrays (FPGAs)
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCost Beneficial Solution for High Rate Data Processingen_US
dc.contributor.authorMirchandani, Chandruen
dc.contributor.authorFisher, Daviden
dc.contributor.authorGhuman, Parminderen
dc.contributor.departmentLockheed-Martin Space Mission Systemsen
dc.contributor.departmentStinger Ghaffarian Technologiesen
dc.contributor.departmentNASAen
dc.date.issued1999-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractGSFC in keeping with the tenets of NASA has been aggressively investigating new technologies for spacecraft and ground communications and processing. The application of these technologies, together with standardized telemetry formats, make it possible to build systems that provide high-performance at low cost in a short development cycle. The High Rate Telemetry Acquisition System (HRTAS) Prototype is one such effort that has validated Goddard's push towards faster, better and cheaper. The HRTAS system architecture is based on the Peripheral Component Interconnect (PCI) bus and VLSI Application-Specific Integrated Circuits (ASICs). These ASICs perform frame synchronization, bit-transition density decoding, cyclic redundancy code (CRC) error checking, Reed-Solomon error detection/correction, data unit sorting, packet extraction, annotation and other service processing. This processing in performed at rates of up to and greater than 150 Mbps sustained using a high-end performance workstation running standard UNIX O/S, (DEC 4100 with DEC UNIX or better). ASICs are also used for the digital reception of Intermediate Frequency (IF) telemetry as well as the spacecraft command interface for commands and data simulations. To improve the efficiency of the back-end processing, the level zero processing sorting element is being developed. This will provide a complete hardware solution to extracting and sorting source data units and making these available in separate files on a remote disk system. Research is on going to extend this development to higher levels of the science data processing pipeline. The fact that level 1 and higher processing is instrument dependent; an acceleration approach utilizing ASICs is not feasible. The advent of field programmable gate array (FPGA) based computing, referred to as adaptive or reconfigurable computing, provides a processing performance close to ASIC levels while maintaining much of the programmability of traditional microprocessor based systems. This adaptive computing paradigm has been successfully demonstrated and its cost performance validated, to make it a viable technology for the level one and higher processing element for the HRTAS. Higher levels of processing are defined as the extraction of useful information from source telemetry data. This information has to be made available to the science data user in a very short period of time. This paper will describe this low cost solution for high rate data processing at level one and higher processing levels. The paper will further discuss the cost-benefit of this technology in terms of cost, schedule, reliability and performance.en
dc.subjectTelemetryen
dc.subjectframe synchronizationen
dc.subjectReed-Solomon error detection and correctionen
dc.subjectservice processingen
dc.subjectCCSDSen
dc.subjectlow cost platformsen
dc.subjectApplication Specific Integrated Circuits (ASICs)en
dc.subjectField Programmable Gate Arrays (FPGAs)en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606836en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.