Persistent Link:
http://hdl.handle.net/10150/606719
Title:
Filtering Effects in a Spread-Spectrum Telemetry System
Author:
Harman, W. H.
Affiliation:
TRW Systems Group
Issue Date:
1969-09
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Binary antipodal direct-sequence biphase modulation is employed (for the purpose of interference reduction) over a channel disturbed by white noise and an "external" coherent sinusoidal interference. Before these are added, the signal suffers distortion in the form of linear filtering whose effects are to be determined. The receiver is a coherent "rematched filter" (matched to the distorted signal). The mean and variance of the detection variable are expressed as an output SNR (signal to noise ratio). The variance is the sum of three components: due to noise, external interference, and self interference. Concise formulas for the first two contributions are developed. The third is approximated and found to be quite small in many cases of interest. Results are applied in the case in which the filter has a bandpass characteristic and external interference is dominant. With fixed signal power entering the filter, there is an optimal chip rate above which filter distortion effects increase faster than process gain; the optimal chip rate is approximately equal to the filter noise bandwidth B (Hertz). For an ideal bandpass filter and a single pole bandpass filter, the optimal chip rates are 1.0B and 0.95B, respectively.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleFiltering Effects in a Spread-Spectrum Telemetry Systemen_US
dc.contributor.authorHarman, W. H.en
dc.contributor.departmentTRW Systems Groupen
dc.date.issued1969-09en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractBinary antipodal direct-sequence biphase modulation is employed (for the purpose of interference reduction) over a channel disturbed by white noise and an "external" coherent sinusoidal interference. Before these are added, the signal suffers distortion in the form of linear filtering whose effects are to be determined. The receiver is a coherent "rematched filter" (matched to the distorted signal). The mean and variance of the detection variable are expressed as an output SNR (signal to noise ratio). The variance is the sum of three components: due to noise, external interference, and self interference. Concise formulas for the first two contributions are developed. The third is approximated and found to be quite small in many cases of interest. Results are applied in the case in which the filter has a bandpass characteristic and external interference is dominant. With fixed signal power entering the filter, there is an optimal chip rate above which filter distortion effects increase faster than process gain; the optimal chip rate is approximately equal to the filter noise bandwidth B (Hertz). For an ideal bandpass filter and a single pole bandpass filter, the optimal chip rates are 1.0B and 0.95B, respectively.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606719en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.