Persistent Link:
http://hdl.handle.net/10150/606711
Title:
A Phase-Locked UHF Telemetry Transponder for Missile Scoring Applications
Author:
Delbauve, J. R.
Affiliation:
Naval Avionics Facility
Issue Date:
1969-09
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Phase-Locked UHF Telemetry Transponder described in this article is part of the recently conceived Cooperative-Doppler Missile Scoring System. This system obtains the doppler curve of a missile relative to its target, without the use of special scoring equipment in the missile. This is accomplished through comparison of the telemetry information from the missile with a transponded signal from the target aircraft. The transponder is housed in the target aircraft and is responsible for transponding PAM/FM modulation from the telemetry band (2200-2290 MHz) to the scoring band (1760-1850 MHz), while preserving the phase of the modulation during the frequency translation. In order to accomplish this, true phase demodulation of the PAM/FM signal has been achieved through utilization, of the phase-lock technique. Included in this article is an analytical discussion of the phase-lock loop design with derivations of the closed-loop transfer function and response bandwidth; Root-Locus analysis; Bode diagram; and dynamic range and phase response considerations.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA Phase-Locked UHF Telemetry Transponder for Missile Scoring Applicationsen_US
dc.contributor.authorDelbauve, J. R.en
dc.contributor.departmentNaval Avionics Facilityen
dc.date.issued1969-09en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Phase-Locked UHF Telemetry Transponder described in this article is part of the recently conceived Cooperative-Doppler Missile Scoring System. This system obtains the doppler curve of a missile relative to its target, without the use of special scoring equipment in the missile. This is accomplished through comparison of the telemetry information from the missile with a transponded signal from the target aircraft. The transponder is housed in the target aircraft and is responsible for transponding PAM/FM modulation from the telemetry band (2200-2290 MHz) to the scoring band (1760-1850 MHz), while preserving the phase of the modulation during the frequency translation. In order to accomplish this, true phase demodulation of the PAM/FM signal has been achieved through utilization, of the phase-lock technique. Included in this article is an analytical discussion of the phase-lock loop design with derivations of the closed-loop transfer function and response bandwidth; Root-Locus analysis; Bode diagram; and dynamic range and phase response considerations.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606711en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.