Persistent Link:
http://hdl.handle.net/10150/606518
Title:
Performance of Binary PSK Communication Systems
Author:
Oberst, J. F.; Schilling, D. L.
Affiliation:
Polytechnic Institute of Brooklyn
Issue Date:
1968-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The degree of RF coherence which can be established between transmitter and receiver greatly influences the performance of binary communication systems. Practical systems are partially coherent; the main classes are transmitted reference (TR) and single channel (SC). Although SC systems are potentially superior, they are difficult to analyze and have an inherent mark-space ambiguity problem. In this paper, four SC PSK systems have been studied using Monte Carlo simulation on an IBM 360/50 digital computer. Differential data encoding was used. The systems investigated include Decision Feedback (DF), Squaring (SQ), and a variation of SQ called Absolute Value (AB). In addition, a new Maximum Likelihood (ML) SC system, which is optimum in a restricted sense, is derived and simulated. The simulation results show that all of these systems yield comparable average probability of error. This is in contrast with results which have been published previously. Furthermore, the systems can all be shown to reduce to Differential PSK when the number of reference bauds is one. Finally, a method is introduced for studying the effects of various methods of data encoding on SC system operation.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePerformance of Binary PSK Communication Systemsen_US
dc.contributor.authorOberst, J. F.en
dc.contributor.authorSchilling, D. L.en
dc.contributor.departmentPolytechnic Institute of Brooklynen
dc.date.issued1968-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe degree of RF coherence which can be established between transmitter and receiver greatly influences the performance of binary communication systems. Practical systems are partially coherent; the main classes are transmitted reference (TR) and single channel (SC). Although SC systems are potentially superior, they are difficult to analyze and have an inherent mark-space ambiguity problem. In this paper, four SC PSK systems have been studied using Monte Carlo simulation on an IBM 360/50 digital computer. Differential data encoding was used. The systems investigated include Decision Feedback (DF), Squaring (SQ), and a variation of SQ called Absolute Value (AB). In addition, a new Maximum Likelihood (ML) SC system, which is optimum in a restricted sense, is derived and simulated. The simulation results show that all of these systems yield comparable average probability of error. This is in contrast with results which have been published previously. Furthermore, the systems can all be shown to reduce to Differential PSK when the number of reference bauds is one. Finally, a method is introduced for studying the effects of various methods of data encoding on SC system operation.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606518en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.