Persistent Link:
http://hdl.handle.net/10150/606496
Title:
CODED OFDM FOR AERONAUTICAL TELEMETRY
Author:
Rice, Michael; Welling, Kenneth
Affiliation:
Brigham Young University; Motorola ISSPD
Issue Date:
2000-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Three Quadrature Phase Shift Keying (QPSK) mapped COFDM systems demonstrating a continuum of complexity levels are simulated over an evolving three ray model of the multipath fading channel with parameters interpolated from actual channel sounding experiments. The first COFDM system uses coherent QPSK and convolutional coding with interleaving in frequency, channel equalization and soft decision decoding; the second uses convolutional coding with interleaving in frequency, Differential Phase Shift Keying (DPSK) and soft decision decoding; the third system uses a quaternary BCH code with DPSK mapping and Error and Erasure Decoding (EED). All three systems are shown to be able to provide reliable data communication during frequency selective fade events. Simulations demonstrate QPSK mapped COFDM with reasonable complexity performs well in a multipath frequency selective fading environment under parameters typically encountered in aeronautical telemetry.
Keywords:
Coded Orthogonal Frequency Division Multiplexing; OFDM; Error Control Coding; frequency selective fading; multipath
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCODED OFDM FOR AERONAUTICAL TELEMETRYen_US
dc.contributor.authorRice, Michaelen
dc.contributor.authorWelling, Kennethen
dc.contributor.departmentBrigham Young Universityen
dc.contributor.departmentMotorola ISSPDen
dc.date.issued2000-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThree Quadrature Phase Shift Keying (QPSK) mapped COFDM systems demonstrating a continuum of complexity levels are simulated over an evolving three ray model of the multipath fading channel with parameters interpolated from actual channel sounding experiments. The first COFDM system uses coherent QPSK and convolutional coding with interleaving in frequency, channel equalization and soft decision decoding; the second uses convolutional coding with interleaving in frequency, Differential Phase Shift Keying (DPSK) and soft decision decoding; the third system uses a quaternary BCH code with DPSK mapping and Error and Erasure Decoding (EED). All three systems are shown to be able to provide reliable data communication during frequency selective fade events. Simulations demonstrate QPSK mapped COFDM with reasonable complexity performs well in a multipath frequency selective fading environment under parameters typically encountered in aeronautical telemetry.en
dc.subjectCoded Orthogonal Frequency Division Multiplexingen
dc.subjectOFDMen
dc.subjectError Control Codingen
dc.subjectfrequency selective fadingen
dc.subjectmultipathen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606496en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.