Persistent Link:
http://hdl.handle.net/10150/606461
Title:
NON-COHERENTLY DETECTED FQPSK: RAPID SYNCHRONIZATION AND COMPATIBILITY WITH PCM/FM RECEIVERS
Author:
Park, Hyung Chul; Lee, Kwyro; Feher, Kamilo
Affiliation:
Korea Advanced Institute of Science and Technology; University of California; Digcom, Inc.
Issue Date:
2001-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
A new class of non-coherent detection techniques for recently standardized Feher patented quadrature phase-shift keying (FQPSK) systems is proposed and studied by computer aided design/simulations and also verified by experimental hardware measurements. The theoretical concepts of the described non-coherent techniques are based on an interpretation of the instantaneous frequency deviation or phase transition characteristics of FQPSK-B modulated signal at the front end of the receiver. These are accomplished either by Limiter-Discriminator (LD) or by Limiter-Discriminator followed by Integrate-and-Dump (LD I&D) methods. It is shown that significant BER performance improvements can be obtained by increasing the received signal’s observation time over multiple symbols as well as by adopting trellis-demodulation. For example, our simulation results show that a BER=10^-4 can be obtained for an E(b)/N(0)=12.7 dB.
Keywords:
Feher patented QPSK or FQPSK; Non-coherent detection; Multiple symbol observation; Viterbi detection; Maximum likelihood sequence detection
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleNON-COHERENTLY DETECTED FQPSK: RAPID SYNCHRONIZATION AND COMPATIBILITY WITH PCM/FM RECEIVERSen_US
dc.contributor.authorPark, Hyung Chulen
dc.contributor.authorLee, Kwyroen
dc.contributor.authorFeher, Kamiloen
dc.contributor.departmentKorea Advanced Institute of Science and Technologyen
dc.contributor.departmentUniversity of Californiaen
dc.contributor.departmentDigcom, Inc.en
dc.date.issued2001-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractA new class of non-coherent detection techniques for recently standardized Feher patented quadrature phase-shift keying (FQPSK) systems is proposed and studied by computer aided design/simulations and also verified by experimental hardware measurements. The theoretical concepts of the described non-coherent techniques are based on an interpretation of the instantaneous frequency deviation or phase transition characteristics of FQPSK-B modulated signal at the front end of the receiver. These are accomplished either by Limiter-Discriminator (LD) or by Limiter-Discriminator followed by Integrate-and-Dump (LD I&D) methods. It is shown that significant BER performance improvements can be obtained by increasing the received signal’s observation time over multiple symbols as well as by adopting trellis-demodulation. For example, our simulation results show that a BER=10^-4 can be obtained for an E(b)/N(0)=12.7 dB.en
dc.subjectFeher patented QPSK or FQPSKen
dc.subjectNon-coherent detectionen
dc.subjectMultiple symbol observationen
dc.subjectViterbi detectionen
dc.subjectMaximum likelihood sequence detectionen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606461en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.