NONCOHERENT AND DIFFERENTIAL DETECTION OF FQPSK WITH MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION IN NONLINEAR CHANNELS

Persistent Link:
http://hdl.handle.net/10150/606381
Title:
NONCOHERENT AND DIFFERENTIAL DETECTION OF FQPSK WITH MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION IN NONLINEAR CHANNELS
Author:
Lin, Jin-Son; Feher, Kamilo
Affiliation:
University of California
Issue Date:
2002-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper presents noncoherent limiter-discriminator detection and differential detection of FQPSK (Feher quadrature phase-shift-keying) with maximum-likelihood sequence estimation (MLSE) techniques. Noncoherent FQPSK systems are suitable for fast fading and cochannel interference channels and channels with strong phase noise, and they can offer faster synchronization and reduce outage events compared with conventional coherent systems. In this paper, both differential detection and limiter-discriminator detection of FQPSK are discussed. We use MLSE with lookup tables to exploit the memory in noncoherently detected FQPSK signals and thus significantly improve the bit error rate (BER) performance in an additive white Gaussian noise (AWGN) channel.
Keywords:
Noncoherent detection; FQPSK (Feher quadrature phase-shift-keying); differential detection; limiter-discriminator (LD) detection; maximum-likelihood sequence estimation (MLSE)
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleNONCOHERENT AND DIFFERENTIAL DETECTION OF FQPSK WITH MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION IN NONLINEAR CHANNELSen_US
dc.contributor.authorLin, Jin-Sonen
dc.contributor.authorFeher, Kamiloen
dc.contributor.departmentUniversity of Californiaen
dc.date.issued2002-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper presents noncoherent limiter-discriminator detection and differential detection of FQPSK (Feher quadrature phase-shift-keying) with maximum-likelihood sequence estimation (MLSE) techniques. Noncoherent FQPSK systems are suitable for fast fading and cochannel interference channels and channels with strong phase noise, and they can offer faster synchronization and reduce outage events compared with conventional coherent systems. In this paper, both differential detection and limiter-discriminator detection of FQPSK are discussed. We use MLSE with lookup tables to exploit the memory in noncoherently detected FQPSK signals and thus significantly improve the bit error rate (BER) performance in an additive white Gaussian noise (AWGN) channel.en
dc.subjectNoncoherent detectionen
dc.subjectFQPSK (Feher quadrature phase-shift-keying)en
dc.subjectdifferential detectionen
dc.subjectlimiter-discriminator (LD) detectionen
dc.subjectmaximum-likelihood sequence estimation (MLSE)en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606381en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.