Persistent Link:
http://hdl.handle.net/10150/606162
Title:
Low-Cost Semi-Active Laser Seekers for US Army Application
Author:
Hubbard, Keith; Katulka, Gary; Lyon, Dave; Petrick, Doug; Fresconi, Frank; Horwath, T. G.
Affiliation:
Aberdeen Proving Ground; Dr. T. G. Horwath Consulting, Inc.; Dynamics Sciences, Incorporated
Issue Date:
2008-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The U.S. Army Research Laboratory (ARL) is exploring technologies to provide low-cost precision fires, applicable across both direct and indirect fire weapon systems. One of these applications involves a forward observer (FO) designating the target with a laser spot and a seeker on-board the munition detecting the reflected energy to allow terminal guidance. This approach, referred to as semi-active laser (SAL) guidance, has been utilized on numerous air-delivered munitions to include bombs, missiles and projectiles. However, the cost of these systems, driven by high quality optics, high sensitivity detectors and specialized electronics, has hampered their migration into gun-fired munitions such as mortars, artillery and grenades. To explore, develop and demonstrate minimal cost solutions, ARL invested in an Army Technical Objective (ATO) called Smaller, Lighter, Cheaper Munition Components (SLCMC). Specifically, SAL seeker hardware, predicated upon commercial components (COTS) and mass production techniques, is being prototyped for use with gun launched projectiles and laser target designators. The seeker system is comprised of several printed circuit board boards, a microprocessor, a quad-photo detector and, a molded optical lens unit. This seeker is designed to rapidly update the projectile boresight angle, interface with other strap-down sensors, and feed data into an on-board guidance, navigation & control (G,N&C) system to allow for projectile maneuvers. The seeker design and basic characteristics are discussed and presented through-out the paper and presentation.
Keywords:
Seeker; Munitions; Precision fires; Artillery; Semi-active laser; Guidance systems; Strap-down sensors
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleLow-Cost Semi-Active Laser Seekers for US Army Applicationen_US
dc.contributor.authorHubbard, Keithen
dc.contributor.authorKatulka, Garyen
dc.contributor.authorLyon, Daveen
dc.contributor.authorPetrick, Dougen
dc.contributor.authorFresconi, Franken
dc.contributor.authorHorwath, T. G.en
dc.contributor.departmentAberdeen Proving Grounden
dc.contributor.departmentDr. T. G. Horwath Consulting, Inc.en
dc.contributor.departmentDynamics Sciences, Incorporateden
dc.date.issued2008-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe U.S. Army Research Laboratory (ARL) is exploring technologies to provide low-cost precision fires, applicable across both direct and indirect fire weapon systems. One of these applications involves a forward observer (FO) designating the target with a laser spot and a seeker on-board the munition detecting the reflected energy to allow terminal guidance. This approach, referred to as semi-active laser (SAL) guidance, has been utilized on numerous air-delivered munitions to include bombs, missiles and projectiles. However, the cost of these systems, driven by high quality optics, high sensitivity detectors and specialized electronics, has hampered their migration into gun-fired munitions such as mortars, artillery and grenades. To explore, develop and demonstrate minimal cost solutions, ARL invested in an Army Technical Objective (ATO) called Smaller, Lighter, Cheaper Munition Components (SLCMC). Specifically, SAL seeker hardware, predicated upon commercial components (COTS) and mass production techniques, is being prototyped for use with gun launched projectiles and laser target designators. The seeker system is comprised of several printed circuit board boards, a microprocessor, a quad-photo detector and, a molded optical lens unit. This seeker is designed to rapidly update the projectile boresight angle, interface with other strap-down sensors, and feed data into an on-board guidance, navigation & control (G,N&C) system to allow for projectile maneuvers. The seeker design and basic characteristics are discussed and presented through-out the paper and presentation.en
dc.subjectSeekeren
dc.subjectMunitionsen
dc.subjectPrecision firesen
dc.subjectArtilleryen
dc.subjectSemi-active laseren
dc.subjectGuidance systemsen
dc.subjectStrap-down sensorsen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606162en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.