Persistent Link:
http://hdl.handle.net/10150/606141
Title:
Potential Solutions to Communications During Plasmasonic Flight
Author:
Jones, Charles H.
Affiliation:
Air Force Flight Test Center
Issue Date:
2009-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
At about Mach number 10 and above, a high energy plasma field forms around a vehicle. This plasma sheath has a high attenuation factor that can cause communications black out. No practical solutions to communicating through a plasma sheath are known. In addition to standard real time data needs for test, a driving requirement to solve this problem is that most solutions will have to be designed into the vehicle. Modifications of vehicles designed to travel at these Mach numbers, especially any exterior modifications, will be extremely difficult due to effects on aerodynamics, thermal protection, and the materials used. A list of possible solutions to communications through hypersonically induced plasma has been collected over several years. This list was added to and verified during the Workshop on Communications through Plasma during Hypersonic Flight. Pros and cons of these potential solutions have been discussed and documented as well. The workshop also included a vote by the attending experts on what solutions are most promising. This paper reviews these solutions, their pros and cons, and a recommended way forward to solving this problem.
Keywords:
Plasma; Hypersonic Flight; Telemetry; High Energy Physics; Radio Communications
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePotential Solutions to Communications During Plasmasonic Flighten_US
dc.contributor.authorJones, Charles H.en
dc.contributor.departmentAir Force Flight Test Centeren
dc.date.issued2009-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractAt about Mach number 10 and above, a high energy plasma field forms around a vehicle. This plasma sheath has a high attenuation factor that can cause communications black out. No practical solutions to communicating through a plasma sheath are known. In addition to standard real time data needs for test, a driving requirement to solve this problem is that most solutions will have to be designed into the vehicle. Modifications of vehicles designed to travel at these Mach numbers, especially any exterior modifications, will be extremely difficult due to effects on aerodynamics, thermal protection, and the materials used. A list of possible solutions to communications through hypersonically induced plasma has been collected over several years. This list was added to and verified during the Workshop on Communications through Plasma during Hypersonic Flight. Pros and cons of these potential solutions have been discussed and documented as well. The workshop also included a vote by the attending experts on what solutions are most promising. This paper reviews these solutions, their pros and cons, and a recommended way forward to solving this problem.en
dc.subjectPlasmaen
dc.subjectHypersonic Flighten
dc.subjectTelemetryen
dc.subjectHigh Energy Physicsen
dc.subjectRadio Communicationsen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606141en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.