Expanding the Role of Telemetry in the Aircraft and Space Vehicle Factory Acceptance Test to a Design Driver Allowing 100% Equipment to be Identified that Suffer Infant Mortality Failures

Persistent Link:
http://hdl.handle.net/10150/606024
Title:
Expanding the Role of Telemetry in the Aircraft and Space Vehicle Factory Acceptance Test to a Design Driver Allowing 100% Equipment to be Identified that Suffer Infant Mortality Failures
Author:
Losik, Len
Affiliation:
Failure Analysis
Issue Date:
2009-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The aircraft, satellite, missile and launch vehicle industry suffer from catastrophic infant mortality failures rate at ~25% even after exhaustive and comprehensive factory acceptance testing is completed causing unreliable systems, program delays and cost overruns. The discovery of the presence of deterministic behavior in equipment analog telemetry generated during factory acceptance testing preceding all equipment failures, which is identifiable using prognostic analysis, eliminates infant mortality failures resulting in increased equipment reliability, lower program cost, shorter test and delivery schedule and increased equipment usable life ensuring mission success. The addition of a single, embedded analog telemetry measurement to all active equipment allowing all equipment to be identified during factory testing that fails, and all equipment that will fail within the first year of use, to be identified will allow vehicle builders to lower program cost, use less equipment, use less testing and have a shorter delivery schedule and more reliable equipment and longer equipment usable life expanding the use of telemetry to identifying equipment that will fail well into the future.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleExpanding the Role of Telemetry in the Aircraft and Space Vehicle Factory Acceptance Test to a Design Driver Allowing 100% Equipment to be Identified that Suffer Infant Mortality Failuresen_US
dc.contributor.authorLosik, Lenen
dc.contributor.departmentFailure Analysisen
dc.date.issued2009-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe aircraft, satellite, missile and launch vehicle industry suffer from catastrophic infant mortality failures rate at ~25% even after exhaustive and comprehensive factory acceptance testing is completed causing unreliable systems, program delays and cost overruns. The discovery of the presence of deterministic behavior in equipment analog telemetry generated during factory acceptance testing preceding all equipment failures, which is identifiable using prognostic analysis, eliminates infant mortality failures resulting in increased equipment reliability, lower program cost, shorter test and delivery schedule and increased equipment usable life ensuring mission success. The addition of a single, embedded analog telemetry measurement to all active equipment allowing all equipment to be identified during factory testing that fails, and all equipment that will fail within the first year of use, to be identified will allow vehicle builders to lower program cost, use less equipment, use less testing and have a shorter delivery schedule and more reliable equipment and longer equipment usable life expanding the use of telemetry to identifying equipment that will fail well into the future.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606024en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.