Persistent Link:
http://hdl.handle.net/10150/606017
Title:
Remote Imaging System Acquisition (RISA)
Author:
Lichtsinn, Wade; McKelvy, Evan; Myrick, Adam; Quihuis, Dominic; Williamson, Jamie
Advisor:
Grubbs, Elmer; Marcellin, Michael
Affiliation:
University of Arizona
Issue Date:
2009-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
NASA's Remote Imaging System Acquisition (RISA) project has the goal of producing a single robust and space-efficient imaging system. This paper will show the progress of the current RISA project iteration, tasked with implementing a Inter-Integrated Circuit (I²C) communications controller on a radiation hardened Field Programmable Gate Array (FPGA), characterizing a liquid lens optical system, and adding a radiation hardened temperature sensor. The optical design focuses on small liquid lenses that can vary focal length with no moving parts. The chosen designs will allow this camera system to meet critical mission objectives and provide reliable service to NASA's astronauts.
Keywords:
RISA; liquid lens; FPGA; I²C; temperature sensing
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleRemote Imaging System Acquisition (RISA)en_US
dc.contributor.authorLichtsinn, Wadeen
dc.contributor.authorMcKelvy, Evanen
dc.contributor.authorMyrick, Adamen
dc.contributor.authorQuihuis, Dominicen
dc.contributor.authorWilliamson, Jamieen
dc.contributor.advisorGrubbs, Elmeren
dc.contributor.advisorMarcellin, Michaelen
dc.contributor.departmentUniversity of Arizonaen
dc.date.issued2009-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractNASA's Remote Imaging System Acquisition (RISA) project has the goal of producing a single robust and space-efficient imaging system. This paper will show the progress of the current RISA project iteration, tasked with implementing a Inter-Integrated Circuit (I²C) communications controller on a radiation hardened Field Programmable Gate Array (FPGA), characterizing a liquid lens optical system, and adding a radiation hardened temperature sensor. The optical design focuses on small liquid lenses that can vary focal length with no moving parts. The chosen designs will allow this camera system to meet critical mission objectives and provide reliable service to NASA's astronauts.en
dc.subjectRISAen
dc.subjectliquid lensen
dc.subjectFPGAen
dc.subjectI²Cen
dc.subjecttemperature sensingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606017en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.