Visually Lossless Compression Based on JPEG2000 for Efficient Transmission of High Resolution Color Aerial Images

Persistent Link:
http://hdl.handle.net/10150/605962
Title:
Visually Lossless Compression Based on JPEG2000 for Efficient Transmission of High Resolution Color Aerial Images
Author:
Oh, Han
Advisor:
Marcellin, Michael W.; Bilgin, Ali
Affiliation:
University of Arizona
Issue Date:
2010-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Aerial image collections have experienced exponential growth in size in recent years. These high resolution images are often viewed at a variety of scales. When an image is displayed at reduced scale, maximum quantization step sizes for visually lossless quality become larger. However, previous visually lossless coding algorithms quantize the image with a single set of quantization step sizes, optimized for display at the full resolution level. This implies that if the image is rendered at reduced resolution, there are significant amounts of extraneous information in the codestream. Thus, in this paper, we propose a method which effectively incorporates multiple quantization step sizes, for various display resolutions, into the JPEG2000 framework. If images are browsed from a remote location, this method can significantly reduce bandwidth usage by only transmitting the portion of the codestream required for visually lossless reconstruction at the desired resolution. Experimental results for high resolution color aerial images are presented.
Keywords:
JPEG2000; visually lossless coding; JPIP; human visual system
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleVisually Lossless Compression Based on JPEG2000 for Efficient Transmission of High Resolution Color Aerial Imagesen_US
dc.contributor.authorOh, Hanen
dc.contributor.advisorMarcellin, Michael W.en
dc.contributor.advisorBilgin, Alien
dc.contributor.departmentUniversity of Arizonaen
dc.date.issued2010-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractAerial image collections have experienced exponential growth in size in recent years. These high resolution images are often viewed at a variety of scales. When an image is displayed at reduced scale, maximum quantization step sizes for visually lossless quality become larger. However, previous visually lossless coding algorithms quantize the image with a single set of quantization step sizes, optimized for display at the full resolution level. This implies that if the image is rendered at reduced resolution, there are significant amounts of extraneous information in the codestream. Thus, in this paper, we propose a method which effectively incorporates multiple quantization step sizes, for various display resolutions, into the JPEG2000 framework. If images are browsed from a remote location, this method can significantly reduce bandwidth usage by only transmitting the portion of the codestream required for visually lossless reconstruction at the desired resolution. Experimental results for high resolution color aerial images are presented.en
dc.subjectJPEG2000en
dc.subjectvisually lossless codingen
dc.subjectJPIPen
dc.subjecthuman visual systemen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605962en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.