Persistent Link:
http://hdl.handle.net/10150/605911
Title:
The Range Area Network: A New Approach for Aeronautical Telemetry
Author:
Rice, Michael; Tinubi, Oluwasegun
Affiliation:
Brigham Young University
Issue Date:
2010-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The concept of a range area network dedicated to the reception of telemetry from airborne test articles is explored. The range area network consists of ground-based radios that receive telemetry packets from an airborne test article and relay those packets through the network to a data sink (e.g., the main telemetry display and processing center). The network may use either "dumb" nodes or "smart" nodes and this choice presents a trade-off involving node complexity, network bandwidth, and required RF power. Using a somewhat idealized, but nonetheless realistic example at the Edwards AFB complex and link budgets based on the emerging iNET standard, we show that a network consisting of just 6 nodes reduces the L-band airborne transmitter power to 6W and the ground-based transmitters to 3W. If the airborne transmitter is restricted to 1W at L-band, then coverage can be provided by a grid of 50 nodes.
Keywords:
iNET; wireless networks; modulation; demodulation; coding
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleThe Range Area Network: A New Approach for Aeronautical Telemetryen_US
dc.contributor.authorRice, Michaelen
dc.contributor.authorTinubi, Oluwasegunen
dc.contributor.departmentBrigham Young Universityen
dc.date.issued2010-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe concept of a range area network dedicated to the reception of telemetry from airborne test articles is explored. The range area network consists of ground-based radios that receive telemetry packets from an airborne test article and relay those packets through the network to a data sink (e.g., the main telemetry display and processing center). The network may use either "dumb" nodes or "smart" nodes and this choice presents a trade-off involving node complexity, network bandwidth, and required RF power. Using a somewhat idealized, but nonetheless realistic example at the Edwards AFB complex and link budgets based on the emerging iNET standard, we show that a network consisting of just 6 nodes reduces the L-band airborne transmitter power to 6W and the ground-based transmitters to 3W. If the airborne transmitter is restricted to 1W at L-band, then coverage can be provided by a grid of 50 nodes.en
dc.subjectiNETen
dc.subjectwireless networksen
dc.subjectmodulationen
dc.subjectdemodulationen
dc.subjectcodingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605911en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.