Persistent Link:
http://hdl.handle.net/10150/605821
Title:
The Promise of Wireless Interfaces Onboard Spacecraft
Author:
Plummer, Chris; Magness, Rodger
Affiliation:
Cotectic Ltd; European Space Agency
Issue Date:
2003-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Wireless interfaces are becoming ubiquitous in terrestrial applications ranging from local area networking in business and commercial environments to large scale factory automation and process control. The pressure to develop these wireless interfacing techniques has come from the need to reduce cabling, reduce installation costs, and make it easier to extend network infrastructures. Concerns about electromagnetic compatibility, safety, reliability, and security have lead to the development of techniques and protocols that enable such wireless interfaces to be operated in electromagnetically harsh environments, without generating unacceptable interference, and providing reliable, dependable and secure data communications. On the face of it, the use of wireless interfaces onboard spacecraft looks like a good way of reducing the spacecraft harness mass and bulk. However, recent work by the European Space Agency has shown that, while harness reduction will undoubtedly be one benefit of using wireless interfaces, they offer many other benefits that will be more significant in the near future. Amongst these are significant advantages during integration and testing, the ability to retrofit and upgrade facilities, and cable replacement in moving structures such as robotic arms. In this paper we briefly survey the benefits of wireless interface technologies for spacecraft onboard use, and identify the challenges involved in adapting them for flight use. We then look at the considerations that should be taken into account in establishing the financial case for developing wireless interface technologies for flight applications.
Keywords:
Optical wireless interface; RF wireless interface; spacecraft onboard bus
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleThe Promise of Wireless Interfaces Onboard Spacecraften_US
dc.contributor.authorPlummer, Chrisen
dc.contributor.authorMagness, Rodgeren
dc.contributor.departmentCotectic Ltden
dc.contributor.departmentEuropean Space Agencyen
dc.date.issued2003-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractWireless interfaces are becoming ubiquitous in terrestrial applications ranging from local area networking in business and commercial environments to large scale factory automation and process control. The pressure to develop these wireless interfacing techniques has come from the need to reduce cabling, reduce installation costs, and make it easier to extend network infrastructures. Concerns about electromagnetic compatibility, safety, reliability, and security have lead to the development of techniques and protocols that enable such wireless interfaces to be operated in electromagnetically harsh environments, without generating unacceptable interference, and providing reliable, dependable and secure data communications. On the face of it, the use of wireless interfaces onboard spacecraft looks like a good way of reducing the spacecraft harness mass and bulk. However, recent work by the European Space Agency has shown that, while harness reduction will undoubtedly be one benefit of using wireless interfaces, they offer many other benefits that will be more significant in the near future. Amongst these are significant advantages during integration and testing, the ability to retrofit and upgrade facilities, and cable replacement in moving structures such as robotic arms. In this paper we briefly survey the benefits of wireless interface technologies for spacecraft onboard use, and identify the challenges involved in adapting them for flight use. We then look at the considerations that should be taken into account in establishing the financial case for developing wireless interface technologies for flight applications.en
dc.subjectOptical wireless interfaceen
dc.subjectRF wireless interfaceen
dc.subjectspacecraft onboard busen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605821en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.