Persistent Link:
http://hdl.handle.net/10150/605802
Title:
AN ALTERNATE PROPOSAL FOR ARTM CPM
Author:
Perrins, Erik
Advisor:
Rice, Michael
Affiliation:
Brigham Young University
Issue Date:
2004-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Since the Advanced Range Telemetry (ARTM) program first proposed the use of multi-h continuous phase modulation (ARTM CPM), there has been much work done to characterize the performance of this waveform. The ideal performance of ARTM CPM is well understood and has been shown to be close to that of PCM/FM and the Tier I modulations (FQPSK-B and SOQPSK). In practice, however, ARTM CPM is very sensitive to phase noise at the receiver and also requires very long synchronization times. These difficulties can be addressed with additional link margin. In this paper we propose an alternate set of modulation indexes which are approximately 2 dB superior in performance with respect to the original set (we use minimum distance concepts to characterize the performance of each set). Brief consideration is also given to frequency pulses other than the existing raised cosine (RC) pulse. We also characterize the effect these new parameters have on the signal spectrum. This 2 dB gain gives ARTM CPM some of the system flexibility currently enjoyed by PCM/FM and the Tier I modulations. One such option is to realize this 2 dB gain using low-complexity coherent detection schemes, which we demonstrate; we also show a noncoherent detection scheme that performs within 2 dB of optimum (or in other words, it has the same performance as the existing coherent detector for ARTM CPM). This is significant since noncoherent detection avoids some of the synchronization burdens that have plagued ARTM CPM thus far.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAN ALTERNATE PROPOSAL FOR ARTM CPMen_US
dc.contributor.authorPerrins, Eriken
dc.contributor.advisorRice, Michaelen
dc.contributor.departmentBrigham Young Universityen
dc.date.issued2004-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSince the Advanced Range Telemetry (ARTM) program first proposed the use of multi-h continuous phase modulation (ARTM CPM), there has been much work done to characterize the performance of this waveform. The ideal performance of ARTM CPM is well understood and has been shown to be close to that of PCM/FM and the Tier I modulations (FQPSK-B and SOQPSK). In practice, however, ARTM CPM is very sensitive to phase noise at the receiver and also requires very long synchronization times. These difficulties can be addressed with additional link margin. In this paper we propose an alternate set of modulation indexes which are approximately 2 dB superior in performance with respect to the original set (we use minimum distance concepts to characterize the performance of each set). Brief consideration is also given to frequency pulses other than the existing raised cosine (RC) pulse. We also characterize the effect these new parameters have on the signal spectrum. This 2 dB gain gives ARTM CPM some of the system flexibility currently enjoyed by PCM/FM and the Tier I modulations. One such option is to realize this 2 dB gain using low-complexity coherent detection schemes, which we demonstrate; we also show a noncoherent detection scheme that performs within 2 dB of optimum (or in other words, it has the same performance as the existing coherent detector for ARTM CPM). This is significant since noncoherent detection avoids some of the synchronization burdens that have plagued ARTM CPM thus far.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605802en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.