Persistent Link:
http://hdl.handle.net/10150/605576
Title:
A SINGLE CHANNEL COMMAND DETECTOR FOR DEEP SPACE MISSIONS
Author:
Knapp, Siegbert
Affiliation:
AEG-TELEFUNKEN Laboratories
Issue Date:
1972-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
AEG-TELEFUNKEN has developed a Single Channel Command Detector which will be used in the solar probe HELIOS. This command detector demodulates command data, PSK-modulated on a subcarrier with a symbol error-probability of less than 1x10^-5 at an input signal to noise ratio of 13,2 db per symbol-length. The command detector consists of two succeessive second-order phase locked loops and a matched filter. The subcarrier synchronizer loop tracks the 512 Hz subcarrier, the bitsynchronizer loop performs data-synchronisation and in contrast to former space concepts, requires no additional power. The matched filter correlates the input signal and its estimate, generated by the subcarrier synchronizer-loop. The integration over exact dataperiods is dumped by the bitsyncpulse. This command detector enables the HELIOS Receiver chain to demodulate command data with less than 1 error in 100 000 symbols over a distance of ~ 300 mill. km. Due to sophisticated digital decoding of the HELIOS Decoder, this error-probability results in 1 false command being executed in 64 years.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA SINGLE CHANNEL COMMAND DETECTOR FOR DEEP SPACE MISSIONSen_US
dc.contributor.authorKnapp, Siegberten
dc.contributor.departmentAEG-TELEFUNKEN Laboratoriesen
dc.date.issued1972-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractAEG-TELEFUNKEN has developed a Single Channel Command Detector which will be used in the solar probe HELIOS. This command detector demodulates command data, PSK-modulated on a subcarrier with a symbol error-probability of less than 1x10^-5 at an input signal to noise ratio of 13,2 db per symbol-length. The command detector consists of two succeessive second-order phase locked loops and a matched filter. The subcarrier synchronizer loop tracks the 512 Hz subcarrier, the bitsynchronizer loop performs data-synchronisation and in contrast to former space concepts, requires no additional power. The matched filter correlates the input signal and its estimate, generated by the subcarrier synchronizer-loop. The integration over exact dataperiods is dumped by the bitsyncpulse. This command detector enables the HELIOS Receiver chain to demodulate command data with less than 1 error in 100 000 symbols over a distance of ~ 300 mill. km. Due to sophisticated digital decoding of the HELIOS Decoder, this error-probability results in 1 false command being executed in 64 years.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605576en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.