Persistent Link:
http://hdl.handle.net/10150/605393
Title:
A NEW VHF-INTERFEROMETER WITH THREE STEERABLE HIGH-GAIN-ANTENNAS FOR SATELLITE-TRACKING
Author:
Fogy, W.
Affiliation:
German Aero-Space-Research Establishment
Issue Date:
1972-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The German-Central-Ground-Station near Weilheim, Bavaria, called Z-DBS, operates now on VHF-Telemetry and Telecommand. Its monopulse-autotrack-subsystem measures one way doppler datas and medium-precise (~0,25° RMS) direction angular (AZ,EL) datas. For precise orbital tracking the station will now be completed by a VHF-Interferometer with three steerable high-gain-antennas, using the angular information of the existing system for initial acquisition and ambiguity resolution. Such a system is applicable to track most near-earth-satellites in orbit without needing a global network even with a relatively low percentage of contact time because of its large angular- and distance-coverage from one topos. The interferometer, now under construction, will be ready for operation at the end of 1973. The present paper gives a brief description of the parameter requirements, the system itself and the methods used to overcome the very high technical difficulties. The total residual direction error is predicted not to exceed (10÷15)”, including nearby ground reflexions but excluding residual athmospheric propagation effects. High side-lobe-suppression-antennas with extremly stable phase characteristics as well as a 3-channel-piloting-receiver-system are used to make the antenna’s difference-phase errors small enough and to eliminate phase changes throughout long cables and receivers. A computer operates the whole system to a high degree of automacy and evaluates and smoothes the direction datas.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA NEW VHF-INTERFEROMETER WITH THREE STEERABLE HIGH-GAIN-ANTENNAS FOR SATELLITE-TRACKINGen_US
dc.contributor.authorFogy, W.en
dc.contributor.departmentGerman Aero-Space-Research Establishmenten
dc.date.issued1972-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe German-Central-Ground-Station near Weilheim, Bavaria, called Z-DBS, operates now on VHF-Telemetry and Telecommand. Its monopulse-autotrack-subsystem measures one way doppler datas and medium-precise (~0,25° RMS) direction angular (AZ,EL) datas. For precise orbital tracking the station will now be completed by a VHF-Interferometer with three steerable high-gain-antennas, using the angular information of the existing system for initial acquisition and ambiguity resolution. Such a system is applicable to track most near-earth-satellites in orbit without needing a global network even with a relatively low percentage of contact time because of its large angular- and distance-coverage from one topos. The interferometer, now under construction, will be ready for operation at the end of 1973. The present paper gives a brief description of the parameter requirements, the system itself and the methods used to overcome the very high technical difficulties. The total residual direction error is predicted not to exceed (10÷15)”, including nearby ground reflexions but excluding residual athmospheric propagation effects. High side-lobe-suppression-antennas with extremly stable phase characteristics as well as a 3-channel-piloting-receiver-system are used to make the antenna’s difference-phase errors small enough and to eliminate phase changes throughout long cables and receivers. A computer operates the whole system to a high degree of automacy and evaluates and smoothes the direction datas.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605393en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.