Role of Tissue Kallikrein-Related Peptidase 6 in Colon Cancer Invasion

Persistent Link:
http://hdl.handle.net/10150/605219
Title:
Role of Tissue Kallikrein-Related Peptidase 6 in Colon Cancer Invasion
Author:
Sells, Earlphia
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 08-Aug-2016
Abstract:
Growing evidence indicates that serine proteases known as kallikreins are associated with malignancy and may have potential diagnostic/prognostic applications in cancer. Kallikreins are the largest group of serine proteases. Kallikrein enzymes are often involved in proteolytic cascades through their function in degradation of extracellular matrix proteins and promotion of angiogenesis. Kallikrein 6 (KLK6) is a member of the family of fifteen highly conserved secreted trypsin- or chemotrypsin-like serine proteases. Over-expression of KLK6 has been observed in different pathophysiological states such as neurodegenerative diseases, inflammation and various cancers, including colorectal cancer. In Chapter 3 we elucidated the miRNA-based mechanism of regulation of invasion in metastatic colorectal cancer over-expressing KLK6. We developed HCT116 colon stable isogenic cell lines with knockdown of KLK6 expression using short-hairpin interference RNA (shKLK6 clones). The shKLK6 clones had decreased expression and secretion of KLK6 protein with a minimal effect on cell growth and viability in cell culture. SCID mice injected with shKLK6-3 clone 3 cells exhibited a statistically significant increase in the survival rates (P=0.005), decrease in the incidence of distant metastases and a shift in the location of the metastatic foci closer to the cell's injection site. Levels of KLK6 protein secreted into the bloodstream were significantly lower in animals injected with shKLK6-3 clone 3 compared to HCT116 control clone 1 (P < 0.04). Through bioinformatics analyses we identified and validated three miRNAs, which are important in post-translational modification of bioactive proteins, proliferation, migration and p38 MAPK signaling pathway. In Chapter 4 we developed Caco-2 colon stable isogenic cell lines with expressing enzymatically active or mutant KLK6 protein (Caco-2 stable clones). We employed these cell lines to investigate the importance of KLK6 enzymatic activity of initiation of cell invasion using in vitro and in vivo models.
Type:
text; Electronic Dissertation
Keywords:
Kallikrein-related peptidase 6; KLK6 enzyme; microRNA; mRNA; serine protease; Molecular & Cellular Biology; colorectal cancer invasion
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Molecular & Cellular Biology
Degree Grantor:
University of Arizona
Advisor:
Ignatenko, Natalia I.; Pagel, Mark D.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleRole of Tissue Kallikrein-Related Peptidase 6 in Colon Cancer Invasionen_US
dc.creatorSells, Earlphiaen
dc.contributor.authorSells, Earlphiaen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease 08-Aug-2016en
dc.description.abstractGrowing evidence indicates that serine proteases known as kallikreins are associated with malignancy and may have potential diagnostic/prognostic applications in cancer. Kallikreins are the largest group of serine proteases. Kallikrein enzymes are often involved in proteolytic cascades through their function in degradation of extracellular matrix proteins and promotion of angiogenesis. Kallikrein 6 (KLK6) is a member of the family of fifteen highly conserved secreted trypsin- or chemotrypsin-like serine proteases. Over-expression of KLK6 has been observed in different pathophysiological states such as neurodegenerative diseases, inflammation and various cancers, including colorectal cancer. In Chapter 3 we elucidated the miRNA-based mechanism of regulation of invasion in metastatic colorectal cancer over-expressing KLK6. We developed HCT116 colon stable isogenic cell lines with knockdown of KLK6 expression using short-hairpin interference RNA (shKLK6 clones). The shKLK6 clones had decreased expression and secretion of KLK6 protein with a minimal effect on cell growth and viability in cell culture. SCID mice injected with shKLK6-3 clone 3 cells exhibited a statistically significant increase in the survival rates (P=0.005), decrease in the incidence of distant metastases and a shift in the location of the metastatic foci closer to the cell's injection site. Levels of KLK6 protein secreted into the bloodstream were significantly lower in animals injected with shKLK6-3 clone 3 compared to HCT116 control clone 1 (P < 0.04). Through bioinformatics analyses we identified and validated three miRNAs, which are important in post-translational modification of bioactive proteins, proliferation, migration and p38 MAPK signaling pathway. In Chapter 4 we developed Caco-2 colon stable isogenic cell lines with expressing enzymatically active or mutant KLK6 protein (Caco-2 stable clones). We employed these cell lines to investigate the importance of KLK6 enzymatic activity of initiation of cell invasion using in vitro and in vivo models.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectKallikrein-related peptidase 6en
dc.subjectKLK6 enzymeen
dc.subjectmicroRNAen
dc.subjectmRNAen
dc.subjectserine proteaseen
dc.subjectMolecular & Cellular Biologyen
dc.subjectcolorectal cancer invasionen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineMolecular & Cellular Biologyen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorIgnatenko, Natalia I.en
dc.contributor.advisorPagel, Mark D.en
dc.contributor.committeememberIgnatenko, Natalia I.en
dc.contributor.committeememberPagel, Mark D.en
dc.contributor.committeememberDoetschman, Thomasen
dc.contributor.committeememberTax, Fransen
dc.contributor.committeememberWeinert, Teden
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.