Persistent Link:
http://hdl.handle.net/10150/605218
Title:
Mechanisms and Consequences of Evolving a New Protein Fold
Author:
Kumirov, Vlad K.
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 10-Jan-2017
Abstract:
The ability of mutations to change the fold of a protein provides evolutionary pathways to new structures. To study hypothetical pathways for protein fold evolution, we designed intermediate sequences between Xfaso1 and Pfl6, two homologous Cro proteins that have 40% sequence identity but adopt all–α and α+β folds, respectively. The designed hybrid sequences XPH1 and XPH2 have 70% sequence identity to each other. XPH1 is more similar in sequence to Xfaso1 (86% sequence identity) while XPH2 is more similar to Pfl6 (80% sequence identity). NMR solution ensembles show that XPH1 and XPH2 have structures intermediate between Xfaso1 and Pfl6. Specifically, XPH1 loses α-helices 5 and 6 of Xfaso1 and incorporates a small amount of β-sheet structure; XPH2 preserves most of the β-sheet of Pfl6 but gains a structure comparable to helix 6 of Xfaso1. These findings illustrate that the sequence space between two natural protein folds may encode a range of topologies, which may allow a protein to change its fold extensively through gradual, multistep mechanisms. Evolving a new fold may have consequences, such as a strained conformation. Here we show that Pfl6 represents an early, strained form of the α+β Cro fold resulting from an ancestral remnant of the all-α Cro proteins retained after the fold switch. This nascent fold can be stabilized through deletion mutations in evolution, which can relieve the strain but may also negatively affect DNA-binding function. Compensatory mutations that increase dimerization appear to offset these effects to maintain function. These findings suggest that new folds can undergo mutational editing through evolution, which may occur in parallel pathways with slightly different outcomes.
Type:
text; Electronic Dissertation
Keywords:
protein fold transformation; protein nmr spectroscopy; protein structure; Chemistry; protein evolution
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Cordes, Matthew

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleMechanisms and Consequences of Evolving a New Protein Folden_US
dc.creatorKumirov, Vlad K.en
dc.contributor.authorKumirov, Vlad K.en
dc.date.issued2016en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease 10-Jan-2017en
dc.description.abstractThe ability of mutations to change the fold of a protein provides evolutionary pathways to new structures. To study hypothetical pathways for protein fold evolution, we designed intermediate sequences between Xfaso1 and Pfl6, two homologous Cro proteins that have 40% sequence identity but adopt all–α and α+β folds, respectively. The designed hybrid sequences XPH1 and XPH2 have 70% sequence identity to each other. XPH1 is more similar in sequence to Xfaso1 (86% sequence identity) while XPH2 is more similar to Pfl6 (80% sequence identity). NMR solution ensembles show that XPH1 and XPH2 have structures intermediate between Xfaso1 and Pfl6. Specifically, XPH1 loses α-helices 5 and 6 of Xfaso1 and incorporates a small amount of β-sheet structure; XPH2 preserves most of the β-sheet of Pfl6 but gains a structure comparable to helix 6 of Xfaso1. These findings illustrate that the sequence space between two natural protein folds may encode a range of topologies, which may allow a protein to change its fold extensively through gradual, multistep mechanisms. Evolving a new fold may have consequences, such as a strained conformation. Here we show that Pfl6 represents an early, strained form of the α+β Cro fold resulting from an ancestral remnant of the all-α Cro proteins retained after the fold switch. This nascent fold can be stabilized through deletion mutations in evolution, which can relieve the strain but may also negatively affect DNA-binding function. Compensatory mutations that increase dimerization appear to offset these effects to maintain function. These findings suggest that new folds can undergo mutational editing through evolution, which may occur in parallel pathways with slightly different outcomes.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectprotein fold transformationen
dc.subjectprotein nmr spectroscopyen
dc.subjectprotein structureen
dc.subjectChemistryen
dc.subjectprotein evolutionen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineChemistryen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorCordes, Matthewen
dc.contributor.committeememberCordes, Matthewen
dc.contributor.committeememberGhosh, Indraneelen
dc.contributor.committeememberHruby, Victoren
dc.contributor.committeememberMcEvoy, Meganen
dc.contributor.committeememberMontfort, Williamen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.