Persistent Link:
http://hdl.handle.net/10150/605121
Title:
Oxidation Behavior of Carbon and Ultra-High Temperature Ceramics
Author:
Miller-Oana, Melia
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 07-Dec-2016
Abstract:
Hypersonic vehicles require material systems that can withstand the extreme environment they experience during flight. Carbon-based materials and ultra-high temperature ceramics are candidates for materials systems that will protect hypersonic vehicles. In order to study the material response, an oxyacetylene torch facility and thermal gravimetric analysis are used to investigate the gas-solid interactions under conditions that simulate aspects of flight. The oxyacetylene torch facility is characterized as a function of position from the tip for heat flux and oxygen content. By understanding the local heat flux and oxygen conditions, experiments are designed so that graphite ablation rates can be measured as a function of heat flux and partial pressure of oxygen. Further investigation shows that composition of the material influences the temperature response where ultra-high temperature ceramics exhibit the lowest surface temperatures. Using thermal gravimetric analysis, the isothermal oxidation behavior of ultra-high temperature ceramics from 1000-1600°C is investigated using a Dynamic Non- Equilibrium method in order to understand the reaction kinetics of ZrB₂-SiC where parabolic rate constants are determined. Isothermal oxidation behavior is compared to non-isothermal mass gain and oxide scale formation where specimens oxidized isothermally gain 3 times more mass and have oxide scales 4 times as thick. Finally, the effect of SiC content in ZrB₂ on temperature during oxyacetylene torch testing is determined. Increasing the amount of SiC results in lower front face temperatures because more heat is absorbed due to the endothermic reactions of evaporation of SiO₂.
Type:
text; Electronic Dissertation
Keywords:
Materials Science & Engineering
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Materials Science & Engineering
Degree Grantor:
University of Arizona
Advisor:
Corral, Erica L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleOxidation Behavior of Carbon and Ultra-High Temperature Ceramicsen_US
dc.creatorMiller-Oana, Meliaen
dc.contributor.authorMiller-Oana, Meliaen
dc.date.issued2016en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease 07-Dec-2016en
dc.description.abstractHypersonic vehicles require material systems that can withstand the extreme environment they experience during flight. Carbon-based materials and ultra-high temperature ceramics are candidates for materials systems that will protect hypersonic vehicles. In order to study the material response, an oxyacetylene torch facility and thermal gravimetric analysis are used to investigate the gas-solid interactions under conditions that simulate aspects of flight. The oxyacetylene torch facility is characterized as a function of position from the tip for heat flux and oxygen content. By understanding the local heat flux and oxygen conditions, experiments are designed so that graphite ablation rates can be measured as a function of heat flux and partial pressure of oxygen. Further investigation shows that composition of the material influences the temperature response where ultra-high temperature ceramics exhibit the lowest surface temperatures. Using thermal gravimetric analysis, the isothermal oxidation behavior of ultra-high temperature ceramics from 1000-1600°C is investigated using a Dynamic Non- Equilibrium method in order to understand the reaction kinetics of ZrB₂-SiC where parabolic rate constants are determined. Isothermal oxidation behavior is compared to non-isothermal mass gain and oxide scale formation where specimens oxidized isothermally gain 3 times more mass and have oxide scales 4 times as thick. Finally, the effect of SiC content in ZrB₂ on temperature during oxyacetylene torch testing is determined. Increasing the amount of SiC results in lower front face temperatures because more heat is absorbed due to the endothermic reactions of evaporation of SiO₂.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectMaterials Science & Engineeringen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineMaterials Science & Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorCorral, Erica L.en
dc.contributor.committeememberCorral, Erica L.en
dc.contributor.committeememberMuralidharan, Krishnaen
dc.contributor.committeememberRaghavan, Srinien
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.