Persistent Link:
http://hdl.handle.net/10150/605041
Title:
DATA VALIDATION: A PREREQUISITE TO PERFORMING DATA UNCERTAINTY ANALYSIS
Author:
Walter, Patrick L.
Affiliation:
PCB Piezotronics; Texas Christian University
Issue Date:
2005-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
There are increasing demands, particularly from government agencies, to perform uncertainty analysis in order to assign accuracy bounds to telemetered data from environmental measuring transducers (pressure, acceleration, force, strain, temperature, etc.). Several requirements must be fulfilled before measurement uncertainty analysis is justified. These requirements include good measurement system design practices such as adequate low- and high-frequency response and data-sampling rates, appropriate anti-aliasing filter selection^(1), proper grounding and shielding, and many more. In addition, there are applications (e.g., flight test) in which the environment of the transducer varies with time and/or location. In these applications, it is a requisite that data-validation be performed to establish that an individual transducer responds only to the environmental stimulus that it is intended to measure. Without this validation component designed into the telemetry system, assigned accuracy bounds can be totally meaningless. This paper presents examples and describes techniques for data validation of signals from environmental measuring transducers.
Keywords:
Data-validation; transducer; data accuracy; uncertainty analysis
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleDATA VALIDATION: A PREREQUISITE TO PERFORMING DATA UNCERTAINTY ANALYSISen_US
dc.contributor.authorWalter, Patrick L.en
dc.contributor.departmentPCB Piezotronicsen
dc.contributor.departmentTexas Christian Universityen
dc.date.issued2005-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThere are increasing demands, particularly from government agencies, to perform uncertainty analysis in order to assign accuracy bounds to telemetered data from environmental measuring transducers (pressure, acceleration, force, strain, temperature, etc.). Several requirements must be fulfilled before measurement uncertainty analysis is justified. These requirements include good measurement system design practices such as adequate low- and high-frequency response and data-sampling rates, appropriate anti-aliasing filter selection^(1), proper grounding and shielding, and many more. In addition, there are applications (e.g., flight test) in which the environment of the transducer varies with time and/or location. In these applications, it is a requisite that data-validation be performed to establish that an individual transducer responds only to the environmental stimulus that it is intended to measure. Without this validation component designed into the telemetry system, assigned accuracy bounds can be totally meaningless. This paper presents examples and describes techniques for data validation of signals from environmental measuring transducers.en
dc.subjectData-validationen
dc.subjecttransduceren
dc.subjectdata accuracyen
dc.subjectuncertainty analysisen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605041en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.