Persistent Link:
http://hdl.handle.net/10150/604659
Title:
SIMULATION RESULTS FOR AN INNOVATIVE ANTIMULTIPATH DIGITAL RECEIVER
Author:
Painter, J. H.; Wilson, L. R.
Affiliation:
National Aeronautics and Space Administration; LTV Aerospace Corp.
Issue Date:
1973-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Simulation results are presented for the error rate performance of the recursive digital MAP detector for known M-ary signals in multiplicative and additive Gaussian noise. The structure of the digital simulation of the innovative receiver, operating in a multipath environment, is generally described. Specific results are given for a quaternary signal, of the type used in air-ground data links, with 2500 symbol per second transmission rate. Plots of detection error rate versus additive signal to noise ratio are given, with multipath interference strength as a parameter. For comparison, the error rates of conventional coherent and noncoherent digital MAP detectors are simultaneously simulated and graphed. It is shown that with non-zero multiplicative noise, the error rates of the conventional detectors saturate at an irreducible level as additive signal to noise ratio increases. The error rate for the innovative detector continues to decrease rapidly with increasing additive signal to noise ratio. In the absence of multiplicative interference, the conventional coherent detector and the innovative detector are shown to exhibit identical performance.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSIMULATION RESULTS FOR AN INNOVATIVE ANTIMULTIPATH DIGITAL RECEIVERen_US
dc.contributor.authorPainter, J. H.en
dc.contributor.authorWilson, L. R.en
dc.contributor.departmentNational Aeronautics and Space Administrationen
dc.contributor.departmentLTV Aerospace Corp.en
dc.date.issued1973-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSimulation results are presented for the error rate performance of the recursive digital MAP detector for known M-ary signals in multiplicative and additive Gaussian noise. The structure of the digital simulation of the innovative receiver, operating in a multipath environment, is generally described. Specific results are given for a quaternary signal, of the type used in air-ground data links, with 2500 symbol per second transmission rate. Plots of detection error rate versus additive signal to noise ratio are given, with multipath interference strength as a parameter. For comparison, the error rates of conventional coherent and noncoherent digital MAP detectors are simultaneously simulated and graphed. It is shown that with non-zero multiplicative noise, the error rates of the conventional detectors saturate at an irreducible level as additive signal to noise ratio increases. The error rate for the innovative detector continues to decrease rapidly with increasing additive signal to noise ratio. In the absence of multiplicative interference, the conventional coherent detector and the innovative detector are shown to exhibit identical performance.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604659en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.