Persistent Link:
http://hdl.handle.net/10150/604615
Title:
A 10.6 μm TERRESTRIAL COMMUNICATION LINK*
Author:
Goodwin, Francis E.; Nussmeier, Thomas A.; Zavin, Jack E.
Affiliation:
Hughes Research Laboratories; U. S. Army Electronics Command
Issue Date:
1973-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper reports the development of an experimental type 10.6 μm laser communication system, consisting of a transmitter terminal and a receiver terminal, designed to operate one wav over a nominal five-mile path. The system provides a 5 MB/s digital data channel using a frequency shift keying format and optical heterodyne detection with a mercury cadmium telluride detector operating at a temperature of 77°K. The system is the first CO2 laser heterodyne communication system which is capable of hands-off, uninterrupted operation in a nonlaboratory environment. The achievement of single frequency operation of a laser transmitter and local oscillator in a field system is the result of more than seven years of research and development. Laser frequency purity, stability and control, all questions of primary concern previously, have been proven satisfactory with the development of this system. This paper reports the operation of the system during environmental tests, over a 4.1-mile test range, a 19.5-mile test range at the Hughes facility, and over a three mile test range at Ft. Monmouth, N.J. over a period of several months. During a period of 1320 hours of continuous operation, the system was inoperable for 65 hours due to weather conditions, demonstrating a reliability of 95%.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA 10.6 μm TERRESTRIAL COMMUNICATION LINK*en_US
dc.contributor.authorGoodwin, Francis E.en
dc.contributor.authorNussmeier, Thomas A.en
dc.contributor.authorZavin, Jack E.en
dc.contributor.departmentHughes Research Laboratoriesen
dc.contributor.departmentU. S. Army Electronics Commanden
dc.date.issued1973-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper reports the development of an experimental type 10.6 μm laser communication system, consisting of a transmitter terminal and a receiver terminal, designed to operate one wav over a nominal five-mile path. The system provides a 5 MB/s digital data channel using a frequency shift keying format and optical heterodyne detection with a mercury cadmium telluride detector operating at a temperature of 77°K. The system is the first CO2 laser heterodyne communication system which is capable of hands-off, uninterrupted operation in a nonlaboratory environment. The achievement of single frequency operation of a laser transmitter and local oscillator in a field system is the result of more than seven years of research and development. Laser frequency purity, stability and control, all questions of primary concern previously, have been proven satisfactory with the development of this system. This paper reports the operation of the system during environmental tests, over a 4.1-mile test range, a 19.5-mile test range at the Hughes facility, and over a three mile test range at Ft. Monmouth, N.J. over a period of several months. During a period of 1320 hours of continuous operation, the system was inoperable for 65 hours due to weather conditions, demonstrating a reliability of 95%.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604615en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.