Persistent Link:
http://hdl.handle.net/10150/604515
Title:
An Optimum Detector for Space-Time Trellis Coded Differential MSK
Author:
Dang, Xiaoyu
Advisor:
Rice, Michael
Affiliation:
Brigham Young University
Issue Date:
2007-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The accuracy of channel estimation plays a crucial role in the demodulation of data symbols sent across an unknown wireless medium. In this work a new analytical expression for the channel estimation error of a multiple input multiple output (MIMO) system is obtained when the wireless medium is continuously changing in the temporal domain. Numerical examples are provided to illustrate our findings. Space-time (ST) coding using Continuous Phase Modulation (CPM) has spectral advantages relative to linear modulations. In spite of the spectral benefits, Space-Time Trellis Codes (STTC) using the CPM implementation of Minimum Shift Keying (MSK) scheme has inherent inphase and quadrature interference, when the received complex baseband signal is the input into the matchfilter to remove the shaped sinusoid pulses. In this paper a novel optimum transmitting and detecting structure for STTC-MSK is proposed. Treating the Alamouti scheme as an outer code, each STTC MSK waveform frame is immediately followed by the orthogonal conjugate waveform frame at the transmit side. At the receiver first orthogonal wave forming is applied, then a new time-variant yet simple trellis structure of the STTC-MSK signals is developed. This STTC-MSK detector is absolutely guaranteed to be I/Q interference-free and still keeps a smaller computation load compared with STTC-QPSK. Simulations are made over quasi-static AWGN fading channel. It is shown that our detector for ST-MSK has solved the I/Q interference problem and has around 2.8 dB gain compared with the Alamouti Scheme and 3.8 dB gain for bit error rate at 5 X 10^(-3) in a 2 by 1 Multiple Input Single Output system.
Keywords:
BER (Bit Error Rate); MIMO (Multiple Input Multiple Output); MSK (Minimum Shift Keying)
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAn Optimum Detector for Space-Time Trellis Coded Differential MSKen_US
dc.contributor.authorDang, Xiaoyuen
dc.contributor.advisorRice, Michaelen
dc.contributor.departmentBrigham Young Universityen
dc.date.issued2007-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe accuracy of channel estimation plays a crucial role in the demodulation of data symbols sent across an unknown wireless medium. In this work a new analytical expression for the channel estimation error of a multiple input multiple output (MIMO) system is obtained when the wireless medium is continuously changing in the temporal domain. Numerical examples are provided to illustrate our findings. Space-time (ST) coding using Continuous Phase Modulation (CPM) has spectral advantages relative to linear modulations. In spite of the spectral benefits, Space-Time Trellis Codes (STTC) using the CPM implementation of Minimum Shift Keying (MSK) scheme has inherent inphase and quadrature interference, when the received complex baseband signal is the input into the matchfilter to remove the shaped sinusoid pulses. In this paper a novel optimum transmitting and detecting structure for STTC-MSK is proposed. Treating the Alamouti scheme as an outer code, each STTC MSK waveform frame is immediately followed by the orthogonal conjugate waveform frame at the transmit side. At the receiver first orthogonal wave forming is applied, then a new time-variant yet simple trellis structure of the STTC-MSK signals is developed. This STTC-MSK detector is absolutely guaranteed to be I/Q interference-free and still keeps a smaller computation load compared with STTC-QPSK. Simulations are made over quasi-static AWGN fading channel. It is shown that our detector for ST-MSK has solved the I/Q interference problem and has around 2.8 dB gain compared with the Alamouti Scheme and 3.8 dB gain for bit error rate at 5 X 10^(-3) in a 2 by 1 Multiple Input Single Output system.en
dc.subjectBER (Bit Error Rate)en
dc.subjectMIMO (Multiple Input Multiple Output)en
dc.subjectMSK (Minimum Shift Keying)en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604515en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.