Persistent Link:
http://hdl.handle.net/10150/604489
Title:
MODELING OF THE PLASMA FORMATION DUE TO LASER IRRADIENCE DURING DIRECTED-ENERGY TESTING
Author:
Rajendran, Saravanakanthan; Keidar, Michael; Boyd, Iain D.; Jones, Charles H.; Mork, Brian
Affiliation:
University of Michigan; Edwards Air Force Base
Issue Date:
2007-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Real-time transmission of airborne images to a ground station is highly desirable in many telemetering applications. Such transmission is often through an error prone, time varying wireless channel, possibly under jamming conditions. Hence, a fast, efficient, scalable, and error resilient image compression scheme is vital to realize the full potential of airborne reconnaisance. JPEG2000, the current international standard for image compression, offers most of these features. However, the computational complexity of JPEG2000 limits its use in some applications. Thus, we present a scalable low complexity coder (SLCC) that possesses many desirable features of JPEG2000, yet having high throughput. Continuous radio-wave telemetry is required during planned tests of directed-energy weapons systems in order to characterize in situ the effects of laser irradiation on different target materials. Unfortunately, the incident radiation can cause disruption of the radio signal during the directed-energy testing. Several phenomena associated with directed-energy impact can lead to communication path losses, such as ablation, charged particle emission, charring, and chemical changes in the target materials. Directed-energy impact on the target material leads to target heating and consequent ablation. In this paper, a numerical model has been developed to describe the laser induced ablation of metal surfaces. The model describes the absorption of the laser energy by the metal and the resulting temperature rise in the surface. This temperature rise then induces ablation of the target material. Results for an aluminum target irradiated with a KrF laser were obtained. Temperature profiles in the target material and surface temperature changes are presented along with the ablation rate as a function of time as the aluminum target is irradiated. This report presents results for cases when laser energy absorption by the plasma plume created above the surface is not significant.
Keywords:
Laser Ablation; Target Heating; Ablation Modeling
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleMODELING OF THE PLASMA FORMATION DUE TO LASER IRRADIENCE DURING DIRECTED-ENERGY TESTINGen_US
dc.contributor.authorRajendran, Saravanakanthanen
dc.contributor.authorKeidar, Michaelen
dc.contributor.authorBoyd, Iain D.en
dc.contributor.authorJones, Charles H.en
dc.contributor.authorMork, Brianen
dc.contributor.departmentUniversity of Michiganen
dc.contributor.departmentEdwards Air Force Baseen
dc.date.issued2007-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractReal-time transmission of airborne images to a ground station is highly desirable in many telemetering applications. Such transmission is often through an error prone, time varying wireless channel, possibly under jamming conditions. Hence, a fast, efficient, scalable, and error resilient image compression scheme is vital to realize the full potential of airborne reconnaisance. JPEG2000, the current international standard for image compression, offers most of these features. However, the computational complexity of JPEG2000 limits its use in some applications. Thus, we present a scalable low complexity coder (SLCC) that possesses many desirable features of JPEG2000, yet having high throughput. Continuous radio-wave telemetry is required during planned tests of directed-energy weapons systems in order to characterize in situ the effects of laser irradiation on different target materials. Unfortunately, the incident radiation can cause disruption of the radio signal during the directed-energy testing. Several phenomena associated with directed-energy impact can lead to communication path losses, such as ablation, charged particle emission, charring, and chemical changes in the target materials. Directed-energy impact on the target material leads to target heating and consequent ablation. In this paper, a numerical model has been developed to describe the laser induced ablation of metal surfaces. The model describes the absorption of the laser energy by the metal and the resulting temperature rise in the surface. This temperature rise then induces ablation of the target material. Results for an aluminum target irradiated with a KrF laser were obtained. Temperature profiles in the target material and surface temperature changes are presented along with the ablation rate as a function of time as the aluminum target is irradiated. This report presents results for cases when laser energy absorption by the plasma plume created above the surface is not significant.en
dc.subjectLaser Ablationen
dc.subjectTarget Heatingen
dc.subjectAblation Modelingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604489en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.