Persistent Link:
http://hdl.handle.net/10150/604415
Title:
CPFSK, FQPSK-JR and ARTM CPM ON A ROCKET LAUNCH
Author:
Wolf, Glen; Ortigoza, Saul; Streich, Ronald G.
Affiliation:
Edwards Air Force Base
Issue Date:
2006-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
A rocket launch, as high dynamics target, was used to demonstrate X-band tracking and also to verify high bit rate frequency planning while demonstrating significant bandwidth reduction with IRIG standard advanced modulation methods. X-band tracking by a modified 8-foot mobile telemetry antenna was excellent. Three separate S-band transmitters with three separate wraparound antennas were launched as a piggyback payload on an Enhanced Orion sounding rocket at White Sands Missile Range (WSMR) to compare the performance of 10 Mbs and 20 Mbs bit error rate (BER) pattern data transmission from CPFSK, FQPSK-JR and ARTM CPM modulation formats under high dynamic conditions. The test is more remarkable in that another S-band wideband spread spectrum signal was also transmitted with good success. These results show that all three modulation methods performed well during ignition and liftoff, low aspect angle (receiving through the rocket motor plume during ascent from a tracker near the launch pad), spin stabilization antenna lobe fades and payload tumbling. Spectrum pictures are provided to show the dramatic reduction in transmission bandwidth from CPFSK to FQPSK-JR to ARTM CPM. Confirmation of the preflight RF adjacent channel interference planning procedures from IRIG 106-05 is described by spectrum pictures and data quality measurements.
Keywords:
RF bandwidth; modulation type versus bandwidth; adjacent channel interference; aeronautical telemetry signal spacing; FQPSK transmission in a dynamic environment
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCPFSK, FQPSK-JR and ARTM CPM ON A ROCKET LAUNCHen_US
dc.contributor.authorWolf, Glenen
dc.contributor.authorOrtigoza, Saulen
dc.contributor.authorStreich, Ronald G.en
dc.contributor.departmentEdwards Air Force Baseen
dc.date.issued2006-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractA rocket launch, as high dynamics target, was used to demonstrate X-band tracking and also to verify high bit rate frequency planning while demonstrating significant bandwidth reduction with IRIG standard advanced modulation methods. X-band tracking by a modified 8-foot mobile telemetry antenna was excellent. Three separate S-band transmitters with three separate wraparound antennas were launched as a piggyback payload on an Enhanced Orion sounding rocket at White Sands Missile Range (WSMR) to compare the performance of 10 Mbs and 20 Mbs bit error rate (BER) pattern data transmission from CPFSK, FQPSK-JR and ARTM CPM modulation formats under high dynamic conditions. The test is more remarkable in that another S-band wideband spread spectrum signal was also transmitted with good success. These results show that all three modulation methods performed well during ignition and liftoff, low aspect angle (receiving through the rocket motor plume during ascent from a tracker near the launch pad), spin stabilization antenna lobe fades and payload tumbling. Spectrum pictures are provided to show the dramatic reduction in transmission bandwidth from CPFSK to FQPSK-JR to ARTM CPM. Confirmation of the preflight RF adjacent channel interference planning procedures from IRIG 106-05 is described by spectrum pictures and data quality measurements.en
dc.subjectRF bandwidthen
dc.subjectmodulation type versus bandwidthen
dc.subjectadjacent channel interferenceen
dc.subjectaeronautical telemetry signal spacingen
dc.subjectFQPSK transmission in a dynamic environmenten
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604415en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.