Persistent Link:
http://hdl.handle.net/10150/604300
Title:
Reduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channels
Author:
Kannappa, Sandeep Mavuduru
Advisor:
Saquib, Mohammad
Affiliation:
University of Texas at Dallas
Issue Date:
2010-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
High data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.
Keywords:
Aeronautical Telemetry; Channel Equalization; Reduced complexity Viterbi decodes; Minimum Variance Unbiased Estimator
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleReduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channelsen_US
dc.contributor.authorKannappa, Sandeep Mavuduruen
dc.contributor.advisorSaquib, Mohammaden
dc.contributor.departmentUniversity of Texas at Dallasen
dc.date.issued2010-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractHigh data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.en
dc.subjectAeronautical Telemetryen
dc.subjectChannel Equalizationen
dc.subjectReduced complexity Viterbi decodesen
dc.subjectMinimum Variance Unbiased Estimatoren
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604300en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.