Identifying an Oxygenation Index Threshold for Increased Mortality in Acute Respiratory Failure

Persistent Link:
http://hdl.handle.net/10150/603630
Title:
Identifying an Oxygenation Index Threshold for Increased Mortality in Acute Respiratory Failure
Author:
Hammond, Brandon
Affiliation:
The University of Arizona College of Medicine - Phoenix
Issue Date:
25-Mar-2016
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the College of Medicine - Phoenix, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Collection Information:
This item is part of the College of Medicine - Phoenix Scholarly Projects 2016 collection. For more information, contact the Phoenix Biomedical Campus Library at pbc-library@email.arizona.edu.
Publisher:
The University of Arizona.
Abstract:
Objectives: To examine current oxygenation index (OI) data and outcomes using EMR data to identify a specific OI values associated with outcome. Methods: Retrospective review of electronic medical record (EMR) data for patients age 1 month ‐ 20 years mechanically ventilated for >24 hours in the PICU. Serial, average and maximum OI values were calculated. Length of mechanical ventilation, hospital stay and outcome were assessed. Results: OI was calculated on 65 patients from EMR data, of which 6 died (9.2%). The median maximum OI was 10 for all patients, 17 for non‐survivors (NS), and 8 for survivors (S), (p=0.14 via Wilcoxon rank‐sum test). Odds ratios (OR) indicated 2.1 times increase odds of death (p=.08), 95% confidence interval (0.89–5.03) for each one‐percent increase in maximum OI. Average OI OR also revealed 2.1 times increase in odds of death (p=.14), 95% confidence interval (0.77–5.48). ROC analysis indicated a higher discriminate ability for max OI (AUC = 0.68) than average OI (AUC = .58). OI cut points for mortality were established. Mortality was unchanged until max OI >17, for which mortality nearly tripled at a value of 18% versus 6‐7% for range 0‐17. Conclusions: Serial assessment of OI values may allow creation of alert values for increased mortality risk and aid in development of clinical decision rules. Consideration for escalation of therapies for respiratory failure such as high frequency ventilation or ECMO at lower levels of OI than historically reported may be warranted. This study also helps to validate prior reports that OI is useful as a severity score for clinical research and outcome prediction.
MeSH Subjects:
Respiratory Insufficiency
Description:
A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine.
Mentor:
Dalton, Heidi MD; Willis, Brigham MD

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleIdentifying an Oxygenation Index Threshold for Increased Mortality in Acute Respiratory Failureen_US
dc.contributor.authorHammond, Brandonen
dc.contributor.departmentThe University of Arizona College of Medicine - Phoenixen
dc.date.issued2016-03-25en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the College of Medicine - Phoenix, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.collectioninformationThis item is part of the College of Medicine - Phoenix Scholarly Projects 2016 collection. For more information, contact the Phoenix Biomedical Campus Library at pbc-library@email.arizona.edu.en_US
dc.publisherThe University of Arizona.en
dc.description.abstractObjectives: To examine current oxygenation index (OI) data and outcomes using EMR data to identify a specific OI values associated with outcome. Methods: Retrospective review of electronic medical record (EMR) data for patients age 1 month ‐ 20 years mechanically ventilated for >24 hours in the PICU. Serial, average and maximum OI values were calculated. Length of mechanical ventilation, hospital stay and outcome were assessed. Results: OI was calculated on 65 patients from EMR data, of which 6 died (9.2%). The median maximum OI was 10 for all patients, 17 for non‐survivors (NS), and 8 for survivors (S), (p=0.14 via Wilcoxon rank‐sum test). Odds ratios (OR) indicated 2.1 times increase odds of death (p=.08), 95% confidence interval (0.89–5.03) for each one‐percent increase in maximum OI. Average OI OR also revealed 2.1 times increase in odds of death (p=.14), 95% confidence interval (0.77–5.48). ROC analysis indicated a higher discriminate ability for max OI (AUC = 0.68) than average OI (AUC = .58). OI cut points for mortality were established. Mortality was unchanged until max OI >17, for which mortality nearly tripled at a value of 18% versus 6‐7% for range 0‐17. Conclusions: Serial assessment of OI values may allow creation of alert values for increased mortality risk and aid in development of clinical decision rules. Consideration for escalation of therapies for respiratory failure such as high frequency ventilation or ECMO at lower levels of OI than historically reported may be warranted. This study also helps to validate prior reports that OI is useful as a severity score for clinical research and outcome prediction.en
dc.typeThesisen
dc.subject.meshRespiratory Insufficiencyen
dc.descriptionA Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine.en
dc.contributor.mentorDalton, Heidi MDen
dc.contributor.mentorWillis, Brigham MDen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.