Persistent Link:
http://hdl.handle.net/10150/596457
Title:
Limitation of the 2-Antennas Problem for Aircraft Telemetry by Using a Blind Equalizer
Author:
Skrzypczak, Alexandre; Blanc, Grégory; Le Bournault, Tangi; Pierozak, Jean-Guy
Affiliation:
Zodiac Data Systems
Issue Date:
2015-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The emission of the telemetry signal is required over minimum two different antennas to keep the telemetry link available during a maneuver of a flying object. If nothing is made at the transmitter side, the telemetry link can be fully lost as both signals may have an opposite phase. We here propose a simple solution based on delay diversity to solve this problem. The basic idea is to introduce a delay between both emitted signals to guarantee a non-destructive signal recombination. We then exploit the ability of the blind equalizer developed by ZDS for the PCM/FM modulation to correctly equalize this signal and to recover the initial data. This solution does not require any modification of the on-board and floor set-ups except the introduction of a delay line between both transmitting antennas. It also does not need any pilot sequence and is natively robust to multipath perturbations.
Keywords:
daisy pattern mitigation; equalization; PCM/FM modulation
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleLimitation of the 2-Antennas Problem for Aircraft Telemetry by Using a Blind Equalizeren_US
dc.contributor.authorSkrzypczak, Alexandreen
dc.contributor.authorBlanc, Grégoryen
dc.contributor.authorLe Bournault, Tangien
dc.contributor.authorPierozak, Jean-Guyen
dc.contributor.departmentZodiac Data Systemsen
dc.date.issued2015-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe emission of the telemetry signal is required over minimum two different antennas to keep the telemetry link available during a maneuver of a flying object. If nothing is made at the transmitter side, the telemetry link can be fully lost as both signals may have an opposite phase. We here propose a simple solution based on delay diversity to solve this problem. The basic idea is to introduce a delay between both emitted signals to guarantee a non-destructive signal recombination. We then exploit the ability of the blind equalizer developed by ZDS for the PCM/FM modulation to correctly equalize this signal and to recover the initial data. This solution does not require any modification of the on-board and floor set-ups except the introduction of a delay line between both transmitting antennas. It also does not need any pilot sequence and is natively robust to multipath perturbations.en
dc.subjectdaisy pattern mitigationen
dc.subjectequalizationen
dc.subjectPCM/FM modulationen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/596457en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.