Persistent Link:
http://hdl.handle.net/10150/596433
Title:
On-Board Data Processing and Filtering
Author:
Faber, Marc
Affiliation:
Zodiac Data Systems
Issue Date:
2015-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
One of the requirements resulting from mounting pressure on flight test schedules is the reduction of time needed for data analysis, in pursuit of shorter test cycles. This requirement has ramifications such as the demand for record and processing of not just raw measurement data but also of data converted to engineering units in real time, as well as for an optimized use of the bandwidth available for telemetry downlink and ultimately for shortening the duration of procedures intended to disseminate pre-selected recorded data among different analysis groups on ground. A promising way to successfully address these needs consists in implementing more CPU-intelligence and processing power directly on the on-board flight test equipment. This provides the ability to process complex data in real time. For instance, data acquired at different hardware interfaces (which may be compliant with different standards) can be directly converted to more easy-to-handle engineering units. This leads to a faster extraction and analysis of the actual data contents of the on-board signals and busses. Another central goal is the efficient use of the available bandwidth for telemetry. Real-time data reduction via intelligent filtering is one approach to achieve this challenging objective. The data filtering process should be performed simultaneously on an all-data-capture recording and the user should be able to easily select the interesting data without building PCM formats on board nor to carry out decommutation on ground. This data selection should be as easy as possible for the user, and the on-board FTI devices should generate a seamless and transparent data transmission, making a quick data analysis viable. On-board data processing and filtering has the potential to become the future main path to handle the challenge of FTI data acquisition and analysis in a more comfortable and effective way.
Keywords:
On-Board Processing; Data Reduction; Telemetry Downlink; Faster Post Processing; Engineering Unit Data Conversion; Event Identification; On-Board Quick Monitoring
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleOn-Board Data Processing and Filteringen_US
dc.contributor.authorFaber, Marcen
dc.contributor.departmentZodiac Data Systemsen
dc.date.issued2015-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractOne of the requirements resulting from mounting pressure on flight test schedules is the reduction of time needed for data analysis, in pursuit of shorter test cycles. This requirement has ramifications such as the demand for record and processing of not just raw measurement data but also of data converted to engineering units in real time, as well as for an optimized use of the bandwidth available for telemetry downlink and ultimately for shortening the duration of procedures intended to disseminate pre-selected recorded data among different analysis groups on ground. A promising way to successfully address these needs consists in implementing more CPU-intelligence and processing power directly on the on-board flight test equipment. This provides the ability to process complex data in real time. For instance, data acquired at different hardware interfaces (which may be compliant with different standards) can be directly converted to more easy-to-handle engineering units. This leads to a faster extraction and analysis of the actual data contents of the on-board signals and busses. Another central goal is the efficient use of the available bandwidth for telemetry. Real-time data reduction via intelligent filtering is one approach to achieve this challenging objective. The data filtering process should be performed simultaneously on an all-data-capture recording and the user should be able to easily select the interesting data without building PCM formats on board nor to carry out decommutation on ground. This data selection should be as easy as possible for the user, and the on-board FTI devices should generate a seamless and transparent data transmission, making a quick data analysis viable. On-board data processing and filtering has the potential to become the future main path to handle the challenge of FTI data acquisition and analysis in a more comfortable and effective way.en
dc.subjectOn-Board Processingen
dc.subjectData Reductionen
dc.subjectTelemetry Downlinken
dc.subjectFaster Post Processingen
dc.subjectEngineering Unit Data Conversionen
dc.subjectEvent Identificationen
dc.subjectOn-Board Quick Monitoringen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/596433en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.