Persistent Link:
http://hdl.handle.net/10150/596413
Title:
Spatial Diversity Combining Using Blind Estimation Techniques
Author:
Ardrey, David; Gimler, Gregory; Pippitt, Mark
Affiliation:
MIT Lincoln Laboratory
Issue Date:
2015-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper proposes a spatial diversity combining approach by which spatially diverse telemetry signals from multiple antennas are combined before they are demodulated. The combined signal is guaranteed to at least replicate and in many cases improve upon the performance of any single antenna. By taking advantage of blind channel estimation, the combined signal can be computed as a time varying weighted sum of digital I and Q samples from multiple antennas. Multiple antenna combining is enabled by improved computation capability, high speed network connectivity, and accurate clock synchronization. The algorithm will be demonstrated at the Reagan Test Site (RTS), whose modernization program encompasses multiple antenna sites with network capability and a state of the art software defined radio back end. This paper details the spatial diversity combining algorithm and discusses its merits and challenges. Index Terms - Telemetry, Reagan Test Site, blind estimation, multiple antenna combining, best source selection, spatial diversity combining.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSpatial Diversity Combining Using Blind Estimation Techniquesen_US
dc.contributor.authorArdrey, Daviden
dc.contributor.authorGimler, Gregoryen
dc.contributor.authorPippitt, Marken
dc.contributor.departmentMIT Lincoln Laboratoryen
dc.date.issued2015-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper proposes a spatial diversity combining approach by which spatially diverse telemetry signals from multiple antennas are combined before they are demodulated. The combined signal is guaranteed to at least replicate and in many cases improve upon the performance of any single antenna. By taking advantage of blind channel estimation, the combined signal can be computed as a time varying weighted sum of digital I and Q samples from multiple antennas. Multiple antenna combining is enabled by improved computation capability, high speed network connectivity, and accurate clock synchronization. The algorithm will be demonstrated at the Reagan Test Site (RTS), whose modernization program encompasses multiple antenna sites with network capability and a state of the art software defined radio back end. This paper details the spatial diversity combining algorithm and discusses its merits and challenges. Index Terms - Telemetry, Reagan Test Site, blind estimation, multiple antenna combining, best source selection, spatial diversity combining.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/596413en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.