Persistent Link:
http://hdl.handle.net/10150/596397
Title:
Priority-Aligned Flow Control for IP-Based Telemetry Systems
Author:
Fecko, Mariusz; Change, Kirk; Cichocki, Andrzej; Wong, Larry; O'Connell, Ray; Radke, Mark; Young, Tom; Grace, Thomas
Affiliation:
Applied Communication Sciences; RoboComAI; Edwards Air Force Base; NAVAIR
Issue Date:
2015-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
We developed priority-aligned flow control between the queuing system and the radio for IP-based telemetry systems. The approach provides the unified flow control across all nodes and traffic classes in telemetry links to better regulate bandwidth usage without creating oscillations. It combines multiple features: Volume-based flow control ensures consistency between a traffic queue's drain rate and the TDMA slot allocations for this queue. The allocations are translated into the number of packets to be sent to the radio from the router for each QoS class and test mission. In the case of iNET, the necessary capacity allocations are provided by the Link Manager on the ground. Fine-grained queue management allows flow control algorithms to adjust dynamically multiple parameters at the Traffic Engineering Queues as needed. Router- radio interface enhances the existing IETF standard Data Link Exchange Protocol (DLEP) to provide the signaling required for our solution. We defined the queue throughput shortage as the key evaluation metric. Our approach performed significantly better in comparison with the coarse-grained queue control available in Linux kernel. When averaged across links/queues, the reduction was 2-6% and 4-28% for high (8Mbps) and low (1Mbps) channel capacities, respectively. When averaged across multiple channel capacities, the maximum per-queue shortage was reduced from 47% to 4.5%.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePriority-Aligned Flow Control for IP-Based Telemetry Systemsen_US
dc.contributor.authorFecko, Mariuszen
dc.contributor.authorChange, Kirken
dc.contributor.authorCichocki, Andrzejen
dc.contributor.authorWong, Larryen
dc.contributor.authorO'Connell, Rayen
dc.contributor.authorRadke, Marken
dc.contributor.authorYoung, Tomen
dc.contributor.authorGrace, Thomasen
dc.contributor.departmentApplied Communication Sciencesen
dc.contributor.departmentRoboComAIen
dc.contributor.departmentEdwards Air Force Baseen
dc.contributor.departmentNAVAIRen
dc.date.issued2015-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractWe developed priority-aligned flow control between the queuing system and the radio for IP-based telemetry systems. The approach provides the unified flow control across all nodes and traffic classes in telemetry links to better regulate bandwidth usage without creating oscillations. It combines multiple features: Volume-based flow control ensures consistency between a traffic queue's drain rate and the TDMA slot allocations for this queue. The allocations are translated into the number of packets to be sent to the radio from the router for each QoS class and test mission. In the case of iNET, the necessary capacity allocations are provided by the Link Manager on the ground. Fine-grained queue management allows flow control algorithms to adjust dynamically multiple parameters at the Traffic Engineering Queues as needed. Router- radio interface enhances the existing IETF standard Data Link Exchange Protocol (DLEP) to provide the signaling required for our solution. We defined the queue throughput shortage as the key evaluation metric. Our approach performed significantly better in comparison with the coarse-grained queue control available in Linux kernel. When averaged across links/queues, the reduction was 2-6% and 4-28% for high (8Mbps) and low (1Mbps) channel capacities, respectively. When averaged across multiple channel capacities, the maximum per-queue shortage was reduced from 47% to 4.5%.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/596397en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.