All-Polymer Based Fabrication Process for an All-Polymer Flexible and Parellel Optical Interconnect

Persistent Link:
http://hdl.handle.net/10150/595815
Title:
All-Polymer Based Fabrication Process for an All-Polymer Flexible and Parellel Optical Interconnect
Author:
Yang, Jilin
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This thesis proposed and demonstrated a new all-polymer based fabrication process for an all-polymer flexible and parallel optical interconnect cable having a vertical light coupler, which can not only cut down the cost by eliminating metallization process for alignment but also facilitate both in production and application. Throughout the process, polyimide was used as the substrate, coated by Epoclad as claddings, then AP2210B and WPR 5100 were used to fabricate waveguides and 45 degree mirror couplers, respectively. In addition, precisely aligned mirror couplers to waveguides are fabricated by using polymer-based, non-metallic, and transparent alignment marks. Conventional and metallic alignment marks are easy to be detected by camera, when a layer of high reflective material, generally Cr metal, is patterned. However, transparent polymer material is used in this process, as alignment marks made of it which are actually buried phase structures. Therefore, it is hardly to be observed by conventional microscopy system. Hence, to increase the contrast of the alignment marks, I proposed and tested a feature specific alignment camera system for which the shape and depth of the alignment marks are optimized for phase-based imaging, such as phase contrast and Schlieren imaging. The results showed a contrast enhancement of alignment marks image compared to that of a conventional microscopy system. By using the fabrication and alignment process, process for adding waveguides to the structure is identified by using the polymer based alignment marks on the WPR 5100 layer. Mask was made by etch down process using fused silica wafer plate, Cr and AZ 3312 photoresist. At last, the developed and proposed process provides means of all-polymer based fabrication process for a flexible and parallel optical interconnect.
Type:
text; Electronic Thesis
Keywords:
flexible optical interconnect; maskless lithography; phase contrast microscopy; Schlieren imaging system; Optical Sciences; All polymer
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Takashima, Yuzuru

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAll-Polymer Based Fabrication Process for an All-Polymer Flexible and Parellel Optical Interconnecten_US
dc.creatorYang, Jilinen
dc.contributor.authorYang, Jilinen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractThis thesis proposed and demonstrated a new all-polymer based fabrication process for an all-polymer flexible and parallel optical interconnect cable having a vertical light coupler, which can not only cut down the cost by eliminating metallization process for alignment but also facilitate both in production and application. Throughout the process, polyimide was used as the substrate, coated by Epoclad as claddings, then AP2210B and WPR 5100 were used to fabricate waveguides and 45 degree mirror couplers, respectively. In addition, precisely aligned mirror couplers to waveguides are fabricated by using polymer-based, non-metallic, and transparent alignment marks. Conventional and metallic alignment marks are easy to be detected by camera, when a layer of high reflective material, generally Cr metal, is patterned. However, transparent polymer material is used in this process, as alignment marks made of it which are actually buried phase structures. Therefore, it is hardly to be observed by conventional microscopy system. Hence, to increase the contrast of the alignment marks, I proposed and tested a feature specific alignment camera system for which the shape and depth of the alignment marks are optimized for phase-based imaging, such as phase contrast and Schlieren imaging. The results showed a contrast enhancement of alignment marks image compared to that of a conventional microscopy system. By using the fabrication and alignment process, process for adding waveguides to the structure is identified by using the polymer based alignment marks on the WPR 5100 layer. Mask was made by etch down process using fused silica wafer plate, Cr and AZ 3312 photoresist. At last, the developed and proposed process provides means of all-polymer based fabrication process for a flexible and parallel optical interconnect.en
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectflexible optical interconnecten
dc.subjectmaskless lithographyen
dc.subjectphase contrast microscopyen
dc.subjectSchlieren imaging systemen
dc.subjectOptical Sciencesen
dc.subjectAll polymeren
thesis.degree.nameM.S.en
thesis.degree.levelmastersen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorTakashima, Yuzuruen
dc.contributor.committeememberTakashima, Yuzuruen
dc.contributor.committeememberLiang, Rongguangen
dc.contributor.committeememberMilster, Tomen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.