Persistent Link:
http://hdl.handle.net/10150/595793
Title:
A New Approach to Multipath Mitigation in Aeronautical Telemetry
Author:
Rice, Michael; Narumanchi, Gayatri; Saquib, Mohammad
Affiliation:
Brigham Young University; University of Texas at Dallas
Issue Date:
2011-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper compares the bit error rate performance of a single channel equalizer with the bit error rate performance of a multi-channel equalizer (in the form of the time-reversed space-time block code) using channels derived from multipath channel measurements at Edwards AFB, California, and Cairns Army Airfield, Ft. Rucker, Alabama. The results show that the performance of the multi-channel equalizer is better than the single channel equalizer over the weaker channel, but worse than the performance of the single channel equalizer over the stronger channel. We conclude that the best approach for the informed transmitter is to apply all available power to a single antenna, whereas the best approach for the uninformed transmitter is to apply equal power with transmit diversity to the two available antennas.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA New Approach to Multipath Mitigation in Aeronautical Telemetryen_US
dc.contributor.authorRice, Michaelen
dc.contributor.authorNarumanchi, Gayatrien
dc.contributor.authorSaquib, Mohammaden
dc.contributor.departmentBrigham Young Universityen
dc.contributor.departmentUniversity of Texas at Dallasen
dc.date.issued2011-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper compares the bit error rate performance of a single channel equalizer with the bit error rate performance of a multi-channel equalizer (in the form of the time-reversed space-time block code) using channels derived from multipath channel measurements at Edwards AFB, California, and Cairns Army Airfield, Ft. Rucker, Alabama. The results show that the performance of the multi-channel equalizer is better than the single channel equalizer over the weaker channel, but worse than the performance of the single channel equalizer over the stronger channel. We conclude that the best approach for the informed transmitter is to apply all available power to a single antenna, whereas the best approach for the uninformed transmitter is to apply equal power with transmit diversity to the two available antennas.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/595793en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.