Persistent Link:
http://hdl.handle.net/10150/581642
Title:
Implementing Space Link Extension (SLE) for Very High Rate Space Links
Author:
Lokshin, Kirill; Puri, Amit; Irvin, Dana; Ross, Frank; Rush, Rebecca
Affiliation:
Ingenicomm, Inc.
Issue Date:
2012-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Space Link Extension (SLE) is a set of recommended standards for mission cross support developed by the Consultative Committee for Space Data Systems (CCSDS). The SLE recommendations define protocols for extending the space link from ground terminals to other facilities deeper within a ground network, allowing distributed access to space link telecommand and telemetry services. The SLE protocols are widely used to provide cross support between sites, programs, and agencies. Traditional SLE protocol implementations have been limited in their ability to support high data rates and large numbers of concurrent service instances. Such limited solutions were sufficient to support the needs of spacecraft health and status or older, low-rate science data. More recent missions, however, have required significantly increased data rates on both uplink and downlink paths, necessitating a new approach to SLE implementation. This paper discusses the design principles involved in implementing the SLE protocols in support of high channel and aggregate mission data rates, with particular focus on the tradeoffs necessary to provide SLE link capability at sustained single-channel rates above 1 Gigabit per second. The paper addresses significant performance bottlenecks in the conventional SLE protocol stack and proposes potential mitigation strategies for them.
Keywords:
Space Link Extension; SLE; High-Rate Services; Optimization
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleImplementing Space Link Extension (SLE) for Very High Rate Space Linksen_US
dc.contributor.authorLokshin, Kirillen
dc.contributor.authorPuri, Amiten
dc.contributor.authorIrvin, Danaen
dc.contributor.authorRoss, Franken
dc.contributor.authorRush, Rebeccaen
dc.contributor.departmentIngenicomm, Inc.en
dc.date.issued2012-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSpace Link Extension (SLE) is a set of recommended standards for mission cross support developed by the Consultative Committee for Space Data Systems (CCSDS). The SLE recommendations define protocols for extending the space link from ground terminals to other facilities deeper within a ground network, allowing distributed access to space link telecommand and telemetry services. The SLE protocols are widely used to provide cross support between sites, programs, and agencies. Traditional SLE protocol implementations have been limited in their ability to support high data rates and large numbers of concurrent service instances. Such limited solutions were sufficient to support the needs of spacecraft health and status or older, low-rate science data. More recent missions, however, have required significantly increased data rates on both uplink and downlink paths, necessitating a new approach to SLE implementation. This paper discusses the design principles involved in implementing the SLE protocols in support of high channel and aggregate mission data rates, with particular focus on the tradeoffs necessary to provide SLE link capability at sustained single-channel rates above 1 Gigabit per second. The paper addresses significant performance bottlenecks in the conventional SLE protocol stack and proposes potential mitigation strategies for them.en
dc.subjectSpace Link Extensionen
dc.subjectSLEen
dc.subjectHigh-Rate Servicesen
dc.subjectOptimizationen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/581642en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.