Persistent Link:
http://hdl.handle.net/10150/579659
Title:
C-Band Missile Telemetry Test Project
Author:
Kujiraoka, Scott; Fielder, Russell
Affiliation:
Naval Air Warfare Center Weapons Division (NAWCWD)
Issue Date:
2013-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The physics associated with transmitting and receiving a telemetry signal at a frequency greater than an octave above the current operating band is such that an end-to-end evaluation of the complete data link system (both the transmit and receive side) is required. In 2012, Airborne Instrumentation Systems Division (AISD), Naval Air Warfare Center Weapons Division (NAWCWD) was sponsored by the Office of the Secretary of Defense (OSD) to develop a couple of short-range air-to-air missile platforms that use a specially-designed warhead-replaceable telemetry section incorporating three data links: (1) an S-band link to transmit Time- Space-Position Information (TSPI), (2) an C-band link, and (3) an additional S-band link where the latter two are transmitting the same pseudo-random bit sequence at the same effective radiated power level. Flight testing will consist of a series of captive tests conducted over land and water. The tests will be performed under a variety of conditions to induce potential issues caused by multipath, atmospheric ducting, fast-slewing of the tracking antenna, and large propagation losses. Flight testing will culminate with the live-fire of a missile over a military land range. This paper describes the continuing efforts of this test program from these series of flight tests, thus quantifying the performance of C-band telemetry data transmission as compared to the S-band.
Keywords:
Augmentation; C-Band; Missile Telemetry
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleC-Band Missile Telemetry Test Projecten_US
dc.contributor.authorKujiraoka, Scotten
dc.contributor.authorFielder, Russellen
dc.contributor.departmentNaval Air Warfare Center Weapons Division (NAWCWD)en
dc.date.issued2013-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe physics associated with transmitting and receiving a telemetry signal at a frequency greater than an octave above the current operating band is such that an end-to-end evaluation of the complete data link system (both the transmit and receive side) is required. In 2012, Airborne Instrumentation Systems Division (AISD), Naval Air Warfare Center Weapons Division (NAWCWD) was sponsored by the Office of the Secretary of Defense (OSD) to develop a couple of short-range air-to-air missile platforms that use a specially-designed warhead-replaceable telemetry section incorporating three data links: (1) an S-band link to transmit Time- Space-Position Information (TSPI), (2) an C-band link, and (3) an additional S-band link where the latter two are transmitting the same pseudo-random bit sequence at the same effective radiated power level. Flight testing will consist of a series of captive tests conducted over land and water. The tests will be performed under a variety of conditions to induce potential issues caused by multipath, atmospheric ducting, fast-slewing of the tracking antenna, and large propagation losses. Flight testing will culminate with the live-fire of a missile over a military land range. This paper describes the continuing efforts of this test program from these series of flight tests, thus quantifying the performance of C-band telemetry data transmission as compared to the S-band.en
dc.subjectAugmentationen
dc.subjectC-Banden
dc.subjectMissile Telemetryen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/579659en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.