Can Permafrost Soil Thaw be Characterized by Hyperspectral Reflectance and Plant Community Structure?

Persistent Link:
http://hdl.handle.net/10150/579278
Title:
Can Permafrost Soil Thaw be Characterized by Hyperspectral Reflectance and Plant Community Structure?
Author:
Garnello, Anthony John Junqueira
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
I investigated (1) whether stages of permafrost thaw were consistently associated with plant community composition and other land surface characteristics; (2) whether those different land surface characteristics could be consistently distinguished with remote sensing tools in a sub-arctic mire. I utilized plant area cover and topography to identify five distinct site-types as being characteristic of different stages of permafrost thaw, and 50 one square-meter plots were measured for species-specific area cover and pole-based hyperspectral reflectance. A Tukey-HSD comparison test showed that plant functional group richness decreased with permafrost thaw, and could readily be used to differentiate between stages of thaw. A discrete, stepwise canonical classification function with bootstrap cross validation showed a mean classification error rate of 7.3% +/- 7.3% (6.8%-9.65% 95% Confidence Interval). These results showed successful ground-truthing methods for regional-scale landscape classification, allowing for high temporal and spatial resolution of circumpolar permafrost thaw monitoring.
Type:
text; Electronic Thesis
Degree Name:
B.S.
Degree Level:
bachelors
Degree Program:
Honors College; Ecology and Evolutionary Biology
Degree Grantor:
University of Arizona
Advisor:
Saleska, Scott

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCan Permafrost Soil Thaw be Characterized by Hyperspectral Reflectance and Plant Community Structure?en_US
dc.creatorGarnello, Anthony John Junqueiraen
dc.contributor.authorGarnello, Anthony John Junqueiraen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractI investigated (1) whether stages of permafrost thaw were consistently associated with plant community composition and other land surface characteristics; (2) whether those different land surface characteristics could be consistently distinguished with remote sensing tools in a sub-arctic mire. I utilized plant area cover and topography to identify five distinct site-types as being characteristic of different stages of permafrost thaw, and 50 one square-meter plots were measured for species-specific area cover and pole-based hyperspectral reflectance. A Tukey-HSD comparison test showed that plant functional group richness decreased with permafrost thaw, and could readily be used to differentiate between stages of thaw. A discrete, stepwise canonical classification function with bootstrap cross validation showed a mean classification error rate of 7.3% +/- 7.3% (6.8%-9.65% 95% Confidence Interval). These results showed successful ground-truthing methods for regional-scale landscape classification, allowing for high temporal and spatial resolution of circumpolar permafrost thaw monitoring.en
dc.typetexten
dc.typeElectronic Thesisen
thesis.degree.nameB.S.en
thesis.degree.levelbachelorsen
thesis.degree.disciplineHonors Collegeen
thesis.degree.disciplineEcology and Evolutionary Biologyen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorSaleska, Scotten
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.