Persistent Link:
http://hdl.handle.net/10150/579113
Title:
Development of Ultrafast Fiber Laser Sources
Author:
Churin, Dmitriy
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 12-Feb-2016
Abstract:
The development of high average and peak power ultrashort pulsed fiber lasers is important for many critical research, industrial, and defense applications. However, the performance of mode-locked fiber oscillators still lags behind that of solid-state counterparts such as Kerr-lens mode-locked Ti:sapphire lasers. Despite the drawbacks in cost, size and required maintenance, Ti:sapphire remains the workhorse of ultrafast science. One of the remaining challenges for fiber lasers to overcome is their limited set of accessible wavelengths. Unfortunately, readily available ytterbium, erbium and thulium fiber lasers can produce coherent radiation only near 1, 1.55 and 2μm, respectively. There remain a significant number of wavelength regions that fiber lasers cannot address. In this thesis, novel fiber lasers producing ultrashort pulses at wavelengths not currently accessible with established active rare-earth-doped fibers are investigated. Our main approach is to use various nonlinear optical effects to generate new laser wavelengths. First, a watt-level synchronously pumped Raman fiber oscillator generating tens of nanojoules femtosecond pulses is demonstrated. Stimulated Raman scattering in a passive fiber within an oscillator cavity allows formation of Raman pulses that are spectrally redshifted with respect to the pump pulses. World-record output pulse energy and conversion efficiency have been achieved with our femtosecond Raman fiber laser design. We have also demonstrated a high power, widely tunable all-fiber optical parametric oscillator (FOPO) based on four-wave mixing in a passive fiber. The FOPO is synchronously pumped with an Yb³⁺-doped mode-locked fiber laser working at ~1040nm. The FOPO produces ultrashort pulses tunable from 760 to 1560nm. Record pulse energy is generated at the output of the femtosecond FOPO. Depending on the configuration of the FOPO, the duration of produced pulses varies between 170fs and 3ps. This new laser source has similar performance to standard Ti:sa femtosecond lasers so it can potentially replace the latter in many applications. Ultrashort optical pulses in the mid-IR and long-IR range (2-20 μm) have many important applications in gas sensing, counter-measures, etc. The realization of the ultrashort pulses in the mid-IR and long-IR wavelengths requires the use of free-space nonlinear crystals. An efficient mid-IR source based on difference frequency generation (DFG) in an AgGaS₂ crystal using femtosecond erbium/thulium pump fiber laser has been proposed and demonstrated. The photon conversion efficiency of the pump wave (1.55μm) to idler wave (9.2μm) has been measured to be 16%, which is today a record for conversion of near-IR light radiation from fiber lasers to 9μm spectral range. Potentially the photon conversion efficiency can be increased up to 60% by using pump pulses having higher peak power. Finally, generation of supercontinuum (SC) light in the mid-IR spectral range is also demonstrated. It is well known that SC produced in standard optical fibers is limited to ~6μm by material absorption. The liquid core optical fiber platform has been proposed to address this matter. Several highly nonlinear liquids have minimal absorption in the mid-IR wavelength range, which potentially allows us to create broadband SC light in this spectral region. SC generation up to 2.4μm in an integrated hollow core optical fiber filled with CS₂ has been demonstrated. Further development of the liquid core optical fiber platform should allow generation of the SC covering wavelengths beyond 6μm.
Type:
text; Electronic Dissertation
Keywords:
Laser physics; Nonlinear optics; Optical Sciences; Fiber optics
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Kieu, Khanh Q.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleDevelopment of Ultrafast Fiber Laser Sourcesen_US
dc.creatorChurin, Dmitriyen
dc.contributor.authorChurin, Dmitriyen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease 12-Feb-2016en
dc.description.abstractThe development of high average and peak power ultrashort pulsed fiber lasers is important for many critical research, industrial, and defense applications. However, the performance of mode-locked fiber oscillators still lags behind that of solid-state counterparts such as Kerr-lens mode-locked Ti:sapphire lasers. Despite the drawbacks in cost, size and required maintenance, Ti:sapphire remains the workhorse of ultrafast science. One of the remaining challenges for fiber lasers to overcome is their limited set of accessible wavelengths. Unfortunately, readily available ytterbium, erbium and thulium fiber lasers can produce coherent radiation only near 1, 1.55 and 2μm, respectively. There remain a significant number of wavelength regions that fiber lasers cannot address. In this thesis, novel fiber lasers producing ultrashort pulses at wavelengths not currently accessible with established active rare-earth-doped fibers are investigated. Our main approach is to use various nonlinear optical effects to generate new laser wavelengths. First, a watt-level synchronously pumped Raman fiber oscillator generating tens of nanojoules femtosecond pulses is demonstrated. Stimulated Raman scattering in a passive fiber within an oscillator cavity allows formation of Raman pulses that are spectrally redshifted with respect to the pump pulses. World-record output pulse energy and conversion efficiency have been achieved with our femtosecond Raman fiber laser design. We have also demonstrated a high power, widely tunable all-fiber optical parametric oscillator (FOPO) based on four-wave mixing in a passive fiber. The FOPO is synchronously pumped with an Yb³⁺-doped mode-locked fiber laser working at ~1040nm. The FOPO produces ultrashort pulses tunable from 760 to 1560nm. Record pulse energy is generated at the output of the femtosecond FOPO. Depending on the configuration of the FOPO, the duration of produced pulses varies between 170fs and 3ps. This new laser source has similar performance to standard Ti:sa femtosecond lasers so it can potentially replace the latter in many applications. Ultrashort optical pulses in the mid-IR and long-IR range (2-20 μm) have many important applications in gas sensing, counter-measures, etc. The realization of the ultrashort pulses in the mid-IR and long-IR wavelengths requires the use of free-space nonlinear crystals. An efficient mid-IR source based on difference frequency generation (DFG) in an AgGaS₂ crystal using femtosecond erbium/thulium pump fiber laser has been proposed and demonstrated. The photon conversion efficiency of the pump wave (1.55μm) to idler wave (9.2μm) has been measured to be 16%, which is today a record for conversion of near-IR light radiation from fiber lasers to 9μm spectral range. Potentially the photon conversion efficiency can be increased up to 60% by using pump pulses having higher peak power. Finally, generation of supercontinuum (SC) light in the mid-IR spectral range is also demonstrated. It is well known that SC produced in standard optical fibers is limited to ~6μm by material absorption. The liquid core optical fiber platform has been proposed to address this matter. Several highly nonlinear liquids have minimal absorption in the mid-IR wavelength range, which potentially allows us to create broadband SC light in this spectral region. SC generation up to 2.4μm in an integrated hollow core optical fiber filled with CS₂ has been demonstrated. Further development of the liquid core optical fiber platform should allow generation of the SC covering wavelengths beyond 6μm.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectLaser physicsen
dc.subjectNonlinear opticsen
dc.subjectOptical Sciencesen
dc.subjectFiber opticsen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorKieu, Khanh Q.en
dc.contributor.committeememberKieu, Khanh Q.en
dc.contributor.committeememberNorwood, Robert A.en
dc.contributor.committeememberPeyghambarian, Nasser N.en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.