Dynamic Learning and Human Interactions under the Extended Belief-Desire-Intention Framework for Transportation Systems

Persistent Link:
http://hdl.handle.net/10150/578837
Title:
Dynamic Learning and Human Interactions under the Extended Belief-Desire-Intention Framework for Transportation Systems
Author:
Kim, Sojung
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 17-Jul-2017
Abstract:
In recent years, multi-agent traffic simulation has been widely used to accurately evaluate the performance of a road network considering individual and dynamic movements of vehicles under a virtual roadway environment. Given initial traffic demands and road conditions, the simulation is executed with multiple iterations and provides users with converged roadway conditions for the performance evaluation. For an accurate traffic simulation model, the driver's learning behavior is one of the major components to be concerned, as it affects road conditions (e.g., traffic flows) at each iteration as well as performance (e.g., accuracy and computational efficiency) of the traffic simulation. The goal of this study is to propose a realistic learning behavior model of drivers concerning their uncertain perception and interactions with other drivers. The proposed learning model is based on the Extended Belief-Desire-Intention (E-BDI) framework and two major decisions arising in the field of transportation (i.e., route planning and decision-making at an intersection). More specifically, the learning behavior is modeled via a dynamic evolution of a Bayesian network (BN) structure. The proposed dynamic learning approach considers three underlying assumptions: 1) the limited memory of a driver, 2) learning with incomplete observations on the road conditions, and 3) non-stationary road conditions. Thus, the dynamic learning approach allows driver agents to understand real-time road conditions and estimate future road conditions based on their past knowledge. In addition, interaction behaviors are also incorporated in the E-BDI framework to address influences of interactions on the driver's learning behavior. In this dissertation work, five major human interactions adopted from a social science literature are considered: 1) accommodation, 2) collaboration, 3) compromise, 4) avoidance, and 5) competition. The first three interaction types help to mimic information exchange behaviors between drivers (e.g., finding a route using a navigation system) while the last two interaction types are relevant with behaviors involving non-information exchange behaviors (e.g., finding a route based on a driver's own experiences). To calibrate the proposed learning behavior model and evaluate its performance in terms of inference accuracy and computational efficiency, drivers' decision data at intersections are collected via a human-in-the-loop experiment involving a driving simulator. Moreover, the proposed model is used to test and demonstrate the impact of five interactions on drivers' learning behavior under an en route planning scenario with real traffic data of Albany, New York, and Phoenix, Arizona. In this dissertation work, two major traffic simulation platforms, AnyLogic® and DynusT®, are used for the demonstration purposes. The experimental results reveal that the proposed model is effective in modeling realistic learning behaviors of drivers in conduction with interactions with other drivers.
Type:
text; Electronic Dissertation
Keywords:
Bayesian network; Belief-Desire-Intention; Dilemma zone; Driver's behavior; En route planning; Systems & Industrial Engineering; Agent-based simulation
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Systems & Industrial Engineering
Degree Grantor:
University of Arizona
Advisor:
Son, Young-Jun

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleDynamic Learning and Human Interactions under the Extended Belief-Desire-Intention Framework for Transportation Systemsen_US
dc.creatorKim, Sojungen
dc.contributor.authorKim, Sojungen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease 17-Jul-2017en
dc.description.abstractIn recent years, multi-agent traffic simulation has been widely used to accurately evaluate the performance of a road network considering individual and dynamic movements of vehicles under a virtual roadway environment. Given initial traffic demands and road conditions, the simulation is executed with multiple iterations and provides users with converged roadway conditions for the performance evaluation. For an accurate traffic simulation model, the driver's learning behavior is one of the major components to be concerned, as it affects road conditions (e.g., traffic flows) at each iteration as well as performance (e.g., accuracy and computational efficiency) of the traffic simulation. The goal of this study is to propose a realistic learning behavior model of drivers concerning their uncertain perception and interactions with other drivers. The proposed learning model is based on the Extended Belief-Desire-Intention (E-BDI) framework and two major decisions arising in the field of transportation (i.e., route planning and decision-making at an intersection). More specifically, the learning behavior is modeled via a dynamic evolution of a Bayesian network (BN) structure. The proposed dynamic learning approach considers three underlying assumptions: 1) the limited memory of a driver, 2) learning with incomplete observations on the road conditions, and 3) non-stationary road conditions. Thus, the dynamic learning approach allows driver agents to understand real-time road conditions and estimate future road conditions based on their past knowledge. In addition, interaction behaviors are also incorporated in the E-BDI framework to address influences of interactions on the driver's learning behavior. In this dissertation work, five major human interactions adopted from a social science literature are considered: 1) accommodation, 2) collaboration, 3) compromise, 4) avoidance, and 5) competition. The first three interaction types help to mimic information exchange behaviors between drivers (e.g., finding a route using a navigation system) while the last two interaction types are relevant with behaviors involving non-information exchange behaviors (e.g., finding a route based on a driver's own experiences). To calibrate the proposed learning behavior model and evaluate its performance in terms of inference accuracy and computational efficiency, drivers' decision data at intersections are collected via a human-in-the-loop experiment involving a driving simulator. Moreover, the proposed model is used to test and demonstrate the impact of five interactions on drivers' learning behavior under an en route planning scenario with real traffic data of Albany, New York, and Phoenix, Arizona. In this dissertation work, two major traffic simulation platforms, AnyLogic® and DynusT®, are used for the demonstration purposes. The experimental results reveal that the proposed model is effective in modeling realistic learning behaviors of drivers in conduction with interactions with other drivers.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectBayesian networken
dc.subjectBelief-Desire-Intentionen
dc.subjectDilemma zoneen
dc.subjectDriver's behavioren
dc.subjectEn route planningen
dc.subjectSystems & Industrial Engineeringen
dc.subjectAgent-based simulationen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineSystems & Industrial Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorSon, Young-Junen
dc.contributor.committeememberSon, Young-Junen
dc.contributor.committeememberCui, Hongen
dc.contributor.committeememberHead, Kenneth Larryen
dc.contributor.committeememberLiu, Jianen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.