Persistent Link:
http://hdl.handle.net/10150/578593
Title:
Q-switched and Mode-locked Mid-IR Fiber Lasers
Author:
Zhu, Gongwen
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mid-infrared (IR) lasers (2-12 μm) have found tremendous applications in medical surgeries, spectroscopy, remote sensing, etc. Nowadays, mid-IR emissions are usually generated from semiconductor lasers, gas lasers, and solid-state lasers based on nonlinear wavelength conversion. However, they usually have disadvantages including poor beam quality, low efficiency, and complicated configurations. Mid-IR fiber lasers have the advantages of excellent beam quality, high efficiency, inherent simplicity, compactness, and outstanding heat-dissipating capability, and have attracted significant interest in recent years. In this dissertation, I have studied and investigated Q-switched and mode-locked fiber lasers in the mid-IR wavelength region. My dissertation includes six chapters: In Chapter 1, I review the background of mid-IR lasers and address my motivation on the research of mid-IR fiber lasers; In Chapter 2, I present the experimental results of microsecond and nanosecond Er³⁺-doped and Ho³⁺-doped fiber lasers in the 3 μm wavelength region Q-switched by Fe²⁺:ZnSe and graphene saturable absorbers. In Chapter 3, Q-switched 3 μm laser fiber amplifiers are investigated experimentally and theoretically and their power scaling are discussed. In Chapter 4, a graphene mode-locked Er³⁺-doped fiber lasers at 2.8 μm with a pulse width < 50 ps is presented. In Chapter 5, extending the spectral range of mid-IR fiber lasers by use of nonlinear wavelength conversion is addressed and discussed. I have proposed 10-watt-level 3-5 μm Raman lasers using tellurite fibers as the nonlinear gain medium and pumped by our Er³⁺-doped fiber lasers at 2.8 μm. In the last chapter, the prospect of mid-IR fiber laser is addressed and further research work is discussed.
Type:
text; Electronic Dissertation
Keywords:
Fiber lasers; Mid-infrared lasers; Mode-locked lasers; Q-switched lasers; Raman lasers; Optical Sciences; Fiber amplifiers
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Peyghambarian, Nasser

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleQ-switched and Mode-locked Mid-IR Fiber Lasersen_US
dc.creatorZhu, Gongwenen
dc.contributor.authorZhu, Gongwenen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractMid-infrared (IR) lasers (2-12 μm) have found tremendous applications in medical surgeries, spectroscopy, remote sensing, etc. Nowadays, mid-IR emissions are usually generated from semiconductor lasers, gas lasers, and solid-state lasers based on nonlinear wavelength conversion. However, they usually have disadvantages including poor beam quality, low efficiency, and complicated configurations. Mid-IR fiber lasers have the advantages of excellent beam quality, high efficiency, inherent simplicity, compactness, and outstanding heat-dissipating capability, and have attracted significant interest in recent years. In this dissertation, I have studied and investigated Q-switched and mode-locked fiber lasers in the mid-IR wavelength region. My dissertation includes six chapters: In Chapter 1, I review the background of mid-IR lasers and address my motivation on the research of mid-IR fiber lasers; In Chapter 2, I present the experimental results of microsecond and nanosecond Er³⁺-doped and Ho³⁺-doped fiber lasers in the 3 μm wavelength region Q-switched by Fe²⁺:ZnSe and graphene saturable absorbers. In Chapter 3, Q-switched 3 μm laser fiber amplifiers are investigated experimentally and theoretically and their power scaling are discussed. In Chapter 4, a graphene mode-locked Er³⁺-doped fiber lasers at 2.8 μm with a pulse width < 50 ps is presented. In Chapter 5, extending the spectral range of mid-IR fiber lasers by use of nonlinear wavelength conversion is addressed and discussed. I have proposed 10-watt-level 3-5 μm Raman lasers using tellurite fibers as the nonlinear gain medium and pumped by our Er³⁺-doped fiber lasers at 2.8 μm. In the last chapter, the prospect of mid-IR fiber laser is addressed and further research work is discussed.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectFiber lasersen
dc.subjectMid-infrared lasersen
dc.subjectMode-locked lasersen
dc.subjectQ-switched lasersen
dc.subjectRaman lasersen
dc.subjectOptical Sciencesen
dc.subjectFiber amplifiersen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorPeyghambarian, Nasseren
dc.contributor.committeememberPeyghambarian, Nasseren
dc.contributor.committeememberNorwood, Robert A.en
dc.contributor.committeememberZhu, Xiushanen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.