• AN ADAPTIVE BASEBAND EQUALIZER FOR HIGH DATA RATE BANDLIMITED CHANNELS

      Wickert, Mark; Samad, Shaheen; Butler, Bryan; University of Colorado at Colorado Springs; Real-Time Logic Inc. (International Foundation for Telemetering, 2006-10)
      Many satellite payloads require wide-band channels for transmission of large amounts of data to users on the ground. These channels typically have substantial distortions, including bandlimiting distortions and high power amplifier (HPA) nonlinearities that cause substantial degradation of bit error rate performance compared to additive white Gaussian noise (AWGN) scenarios. An adaptive equalization algorithm has been selected as the solution to improving bit error rate performance in the presence of these channel distortions. This paper describes the design and implementation of an adaptive baseband equalizer (ABBE) utilizing the latest FPGA technology. Implementation of the design was arrived at by first constructing a high fidelity channel simulation model, which incorporates worst-case signal impairments over the entire data link. All of the modem digital signal processing functions, including multirate carrier and symbol synchronization, are modeled, in addition to the adaptive complex baseband equalizer. Different feedback and feed-forward tap combinations are considered as part of the design optimization.
    • INSTRUMENTING AN AIRBORNE NETWORK TELEMETRY LINK

      Laird, Daniel; Temple, Kip; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      The Central Test and Evaluation Investment Program (CTEIP) Integrated Network Enhanced Telemetry (iNET) program is currently testing a wireless local area networking (WLAN) in an L-band telemetry (TM) channel to evaluate the feasibility and capabilities of enhancing traditional TM methods in a seamless wide area network (WAN). Several advantages of networking are real-time command and control of instrumentation formats, quick-look acquisition, data retransmission and recovery (gapless TM) and test point real-time verification. These networking functions, and all others, need to be tested and evaluated. The iNET team is developing a WLAN based on 802.x technologies to test the feasibility of the enhanced telemetry implementation for flight testing.
    • AN AIRBORNE NETWORK TELEMETRY LINK

      Temple, Kip; Laird, Daniel; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      In a quest to provide networked communication to test assets at all of the Major Range and Test Facility Bases (MRTFB), the integrated Network Enhanced Telemetry (iNET) Program was formed. A study was accomplished outlining five environments that encompass the work of these MRTFBs. The first of these environments to be advanced towards networked communication is the Aeronautical Environment. In order to develop these technologies, a test platform is proposed, realized, and tested. This airborne test platform will be used for concept and product testing and validation of the three portions of the Telemetry Network System (TmNS); the vehicle network, vNET, the radio frequency network (RF), rfNET, and the interface to the ground network, gNET. This paper will present the baseline system configuration, describe its operation, and detail RF link testing results.
    • CELLULAR BROADBAND TELEMETRY OPTIONS FOR THE 21st CENTURY: Looking at broadband cellular from a telemetry perspective

      Smith, Brian J.; Omniwav Mobile, Inc. (International Foundation for Telemetering, 2006-10)
      With the recent broadband upgrades to various cellular infrastructures and the myriad new emerging wireless broadband standards and services offered by carriers, it is often difficult to navigate this sea of technology. In deciding the best choice for broadband telemetry applications, one must look not only at the technology, but also at the economics, market timing, bandwidths, legacy issues, future expandability and coverage, security, protocols, and the requirements of the specific application. This paper reviews the technology roadmap of cellular providers keeping these issues in perspective as they apply to TCP/IP data for images, audio, video, and other broadband telemetry data using CDMA 1xRTT, EV-DO, and EV-DO Rev A systems as well as GSM GPRS/EDGE, UMTS/W-CDMA, HSDPA, and HSUPA networks. Lastly, issues seen by system integrators when using cellular channels for telemetry applications are examined, and a case is presented for overcoming many of these issues through the use of cellular routers.
    • Data Filtering Unit (DFU): Dealing With Cryptovariable Keys in Data Recorded Using the IRIG 106 Chapter 10 Format

      Manning, Dennis; Williams, Rick; Ferrill, Paul; Eglin Air Force Base; Scientific Data Systems, LLC; Avionics Test and Analysis Corp. (International Foundation for Telemetering, 2006-10)
      Recent advancements in IRIG 106 Chapter 10 recording systems allow the recording of all on board 1553 bus and PCM traffic to a single media. These advancements have also brought about the issue of extracting data with different levels of classification that was written to single location. Carrying GPS “smart” weapons further complicates this issue since the recording of GPS keys adds another level of classification to the mix. The ability to separate and/or remove higher level data from a data product is now required. This paper describes the design of a hardware device that will filter specified data from IRIG 106 Chapter 10 recorder memory modules (RMMs) to prevent the storage device or computer from becoming classified at the level of the specified data.
    • INTERFERENCE REJECTION PERFORMANCE AS A MEANS OF FREQUENCY OPTIMISATION IN A MIXED CELLULAR/MANET NETWORK

      Dean, Richard; Webley, Kayonne; Morgan State University (International Foundation for Telemetering, 2006-10)
      Research at Morgan State University shows a means of enabling both a mobile ad-hoc network (MANET) and a cellular network to operate simultaneously in the same spectrum. This enhanced frequency efficiency would facilitate the creation of a hybrid or Mixed Cellular/MANET network (MCMN) in which each of the MCMN sub-networks would have access to the entire allotted spectrum. Interference rejection and excision have been identified as a means of distinguishing between and isolating the two different kinds of signals. This paper shows the promising performance of such techniques within the MCMN environment as a part of the integrated Network Enhanced Telemetry (iNET) project.
    • SIMULATION OF THE AERONAUTICAL RADIO CHANNEL FOR TELEMETRY APPLICATIONS

      Dean, Richard; Mwangi, Patricia A. W.; Haj-Omar, Amr; Montaque, Kishan; Morgan State University (International Foundation for Telemetering, 2006-10)
      The aeronautical channel is an air to ground channel characterized by multipath, high doppler shifts, Rayleigh fading and noise. Use of a channel sounder ensures proper estimation of the parameters associated with the impulse response of the channel. These estimates help us to characterize the radio channels associated with aeronautical telemetry. In order to have a satisfactory channel characterization, the amplitudes, phase shifts and delays associated with each multipath component in the channel model must be determined.
    • LAUNCH VEHICLE EXHAUST PLASMA / PLUME EFFECTS ON GROUND TELEMETRY RECEPTION, STARS FT-04-1

      McWhorter, Mark; Honeywell Aerospace Electronic Systems (International Foundation for Telemetering, 2006-10)
      This paper discusses the effect of vehicle exhaust plasma/plume on the ability to receive telemetered data via an S-band RF link. The data presented herein were captured during the launch of the STARS FT-04-1 on February 23, 2006 from Kodiak Launch Center, Kodiak, Alaska using Alaska Aerospace Development Corporation’s (AADC) Range Safety and Telemetry System (RSTS), designed and integrated by Honeywell.
    • AUTOMATIC RANGE EQUIPMENT SETUP AND CONTROL

      Andzik, Rob; Brans, Charles (Chuck) N.; RT Logic Inc. (International Foundation for Telemetering, 2006-10)
      Today Ranges are faced with the typical dilemma of doing more with less—less money, less time, and less experienced range personnel. Meanwhile, Ranges are being forced to make their operations more efficient in use of time, money, and functionality. As a result, Ranges are looking for automated ways to remotely configure and operate their tracking stations and to provide interoperability between ranges, sites, and equipment. RT Logic worked with numerous range operators and equipment vendors to create an open software architecture that provides rapid device configuration, equipment status at a glance, and automatic fault detection and isolation. RT Logic’s architecture utilizes the CORBA specification to achieve extensibility and scalability for future range requirements. Adoption of this architecture and approach will reduce costs, time, and mistakes.
    • Wireless Sensor System for Airborne Applications

      Berdugo, Albert; Grossman, Hy; Schofield, Nicole; Musteric, Steven; Teletronics Technology Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2006-10)
      Adding an instrumentation / telemetry system to a test vehicle has historically required an intrusive installation for wiring and powering all elements of the system from the sensor to the telemetry transmitter. In some applications there is need for a flexible and modular instrumentation and telemetry system that can be installed with minimal intrusiveness on an aircraft without the need for permanent modifications. Such an application may benefit from the use of a miniaturized, inexpensive network of wireless sensors. This network will communicate its data to a central unit installed within the aircraft. This paper describes recent efforts associated with the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the challenges in developing a wireless sensor network system for use in an airborne environment. These include selection of frequencies, COTS wireless devices, batteries, system synchronization, data bandwidth calculations, and mechanical structure for external installation. The paper will also describe the wireless network architecture as well as the architecture of the wireless sensor and the central control unit.
    • DESIGN AND EXPERIMENTATION WITH A SOFTWARE-DEFINED ACOUSTIC TELEMETRY MODEM

      Doonan, Daniel; Fu, Tricia; Utley, Chris; Iltis, Ronald; Kastner, Ryan; Lee, Hua; University of California, Santa Barbara (International Foundation for Telemetering, 2006-10)
      This paper describes the design and successful development of an acoustic modem for potential use in underwater ecological sensor networks. The presentation includes theoretical study, design and development of both software and hardware, laboratory experiments, full-scale field tests, and the documentation and analysis of field-test results.
    • NETWORK DATA ACQUISITION AND PLAYBACK OF MULTIMEDIA DATA

      Portnoy, Michael; Yang, Hsueh-Szu; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      Traditional data acquisition systems have relied on physical connections between data sources and data receivers to handle the routing of acquired data streams. However, these systems grow exponentially in complexity as the number of data sources and receivers increases. New techniques are needed to address the ever increasing complexity of data acquisition. Furthermore, more advanced mechanisms are needed that move past the limitations of traditional data models that connect each data source to exactly one data receiver. This paper presents a software framework for the playback of multiplexed data acquired from a network acquisition system. This framework uses multicast technologies to connect data sources with multiple data receivers. The network acquisition system is briefly introduced before the software framework is discussed. Both the challenges and advantages involved with creating such a system are presented. Finally, this framework is applied to an aviation telemetry example.
    • MANAGING MULTI-VENDOR INSTRUMENTATION SYSTEMS WITH ABSTRACTION MODELS

      Lockard, Michael T.; Garling, James A. Jr; EMC Corporation, Solutions Engineering Group (International Foundation for Telemetering, 2006-10)
      The quantity and types of measurements and measurement instrumentation required for a test are growing. This paper describes a methodology to define and program multi-vendor instrumentation using abstraction models in a database that allows new instrumentation to be defined rapidly. This allows users to support multiple vendors’ systems while using a common user interface to define instrumentation networks, bus catalogs, measurements, pulse code modulated (PCM) formats, and data processing requirements.
    • LEVERAGING INTERNET PROTOCOL (IP) NETWORKS TO TRANSPORT MULTI-RATE SERIAL DATA STREAMS

      Heath, Doug; Polluconi, Marty; Samad, Flora; RT Logic Incorporated (International Foundation for Telemetering, 2006-10)
      As the rates and numbers of serial telemetry data streams increase, the cost of timely, efficient and robust distribution of those streams increases faster. Without alternatives to traditional pointto- point serial distribution, the complexity of the infrastructure will soon overwhelm potential benefits of the increased stream counts and rates. Utilization of multiplexing algorithms in Field- Programmable Gate Arrays (FPGA), coupled with universally available Internet Protocol (IP) switching technology, provides a low-latency, time-data correlated multi-stream distribution solution. This implementation has yielded zero error IP transport and regeneration of multiple serial streams, maintaining stream to stream skew of less than 10 nsec, with end-to-end latency contribution of less than 15 msec. Adoption of this technique as a drop-in solution can greatly reduce the costs and complexities of maintaining pace with the changing serial telemetry community.
    • A DESIGN OF A DIGITALLY CONTROLLABLE WIDEBAND MICROWAVE RECEIVER

      Huang, Heng; Legarsky, Justin; Lei, Qiang; University of Missouri-Columbia; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Radar echo sounders provide a safe, inexpensive and effective means of obtaining ice sheet thickness. As the roughness of ice surface/subsurface depends on the radio wavelength, wideband radar sensors can provide flexibility for ice thickness measurement under areas with various surface conditions. This paper presents the design of a digitally controllable wideband microwave receiver for a potential radar sounding system. Its radio frequency (RF) frequency ranges from 50 to 500 MHz, while the intermediate frequency (IF) bandwidth is 20 MHz. The receiver provides eight channels for different RF band choices, as well as a number of convenient gain settings. Testing measurements have also been conducted to verify the design requirements.
    • An approach to Integrated Spectrum Efficient Network Enhanced Telemetry (iSENET)

      Okino, Clayton; Gao, Jay; Clare, Loren; Darden, Scott; Walsh, William; Loh, Kok-kiong; Jet Propulsion Laboratory; LinQuest Corporation (International Foundation for Telemetering, 2006-10)
      As the integrated Network Enhanced Telemetry (iNET) program moves forward in resolving systems engineering design and architecture definition, critical technology “gaps” and a migration path to realizing the integration of this technology are needed to insure a smooth transition from the current legacy point to point telemetry links to a network oriented telemetry system. Specifically identified by the DoD aeronautical telemetry community is the need for a migration to a network solution for command, control, and transfer of test data by optimizing the physical, data link, and network layers. In this paper, we present a network centric telemetry preliminary architecture approach based on variants of 802.11 that leverages the open standards as well as the previous Advanced Range Telemetry (ARTM) work on the physical layer waveform. We present a burst modem approach based on the recent AOFDM 802.11a work, a TDMA-like MAC layer based on 802.11e, and then add additional MAC layer features to allow for the multi-hop aeronautical environment using a variant of the current working standard of 802.11s. The combined benefits of the variants obtained from 802.11a, 802.11e, and 802.11s address the needs for both spectrum efficiency in the aeronautical environment and the iNET program.
    • EVERYTHING YOU WANTED TO KNOW ABOUT DOUBLE DIFFERENTIAL ENCODERS BUT WERE AFRAID TO ASK

      Perrins, Erik; University of Kansas (International Foundation for Telemetering, 2006-10)
      The existing offset quadrature phase shift keying (OQPSK) differential encoder in IRIG-106 is a curious scheme with a rather mysterious origin. In this paper, an alternative scheme known as double differential encoding is proposed. In many aspects, the proposed scheme has equivalent performance to the existing scheme: it successfully resolves the 4-phase ambiguity introduced by most carrier phase tracking loops and it also produces two decoded bit errors for each detection error. However, the proposed scheme has a number of conceptual advantages: it can be derived easily from first principles, it decouples the operations of even-bit/odd-bit demultiplexing and differential encoding, and it greatly simplifies the overly-complicated binary-to-ternary symbol mapping for OQPSK. It is also demonstrated to have tangible benefits, such as improved performance in systems with error control coding.
    • The Army’s Way Ahead Challenge: Enterprise Architecture as an Essential Tool to Support the Army’s Transformation Effort

      Mezquita, Fernando; Electronic Proving Ground (International Foundation for Telemetering, 2006-10)
      This article explores the development and use of enterprise architecture as an important tool to support the Army in its effort to strive toward new goals and improve performance. The term enterprise architecture is used to refer to a comprehensive description of all of the key elements and relationships that make up the enterprise operational capabilities, and gain important short- and long-term benefits.
    • WIRELESS INFRA-RED SENSOR

      Chaildin, Mark; Inter-Coastal Electronics (International Foundation for Telemetering, 2006-10)
      For several decades, the military has used the Multiple Integrated Laser Engagement System (MILES) with a series of iR sensors along a belt fastened to a vehicle for training and simulation. Now, an alternative to this legacy system, a solar rechargeable battery powered wireless IR sensor is replacing wired sensors. The use of short-range RF communications network, allows the MILES sensors strategic placement about a combat vehicle without the umbilical cabling normally required for power and signal coupling from the players processing unit. The RF network operates in the 340 to 380 MHz band, has channeling capability of over 1600 channels, and coexists with the vehicles on board high-powered radios without interference. The wireless sensor implements a custom designed IR sensing amplifier, designed for maximum sensitivity and minimal power dissipation, along with advanced semiconductor IC’s for signal processing and power conversion. Solar recharging enables the sensor to operate for extended time, on a single battery that should last for years without replacement. A proprietary software protocol, developed for communication integrity, is a critical part of the overall system and supports other sensor types and control elements with low data rates for a wireless Vehicle Area Network. The system, successfully installed on several military training platforms, proves to be a viable product for military training and simulation systems for the 21st century.
    • THE USE OF TELEMETRY DATA IN AN AIR DATA SYSTEM

      Morrison, Thomas M.; JT3, Edwards AFB (International Foundation for Telemetering, 2006-10)
      Telemetry data are usually collected for analysis at some later time and can be monitored to follow the progress of a test. In the case of an Air Data System the signals from the sensors are sent to a computer that calculates the air data parameters for use on multiple LabView-generated displays, as well as to the Data Acquisition System. The readouts on the multiple displays need to be real-time so they are useful to the flight crew. Equations that control the different air data values are determined by what telemetry data are available and the preference of those doing the test planning. These systems need to display the information in a format useful to the flight crew and be reliable.