• L-3 Communications 3rd Generation Telemetry Transmitter ST-5000 L/S/C Band Architecture and Design Efforts

      Wang, Wearn-Juhn; Martz, David; Hutzel, Kevin; L-3 Communications Telemetry East; L-3 Communications Nova Engineering (International Foundation for Telemetering, 2010-10)
      This paper presents the architecture and design efforts for L-3 3rd generation telemetry transmitter ST-5000. A Modulator/Upconverter with a low phase noise PLL synthesizer, a highly efficient and rugged power amplifier module with the multistage GaN HEMT devices and a high power density buck-boost power supply are discussed.
    • A VHDL Implementation of the Soft Output Viterbi Algorithm

      Perrins, Erik; Werling, Brett W.; University of Kansas (International Foundation for Telemetering, 2010-10)
      In this paper we present a VHDL implementation of the soft output Viterbi algorithm (SOVA). We discuss the usefulness of the SOVA in a serially concatenated convolutional code (SCCC) system. We explore various hardware design decisions along with their implications. Finally, we compare the simulated performance of the hardware implementation to a software reference model over an additive white Gaussian noise (AWGN) channel for several bit widths and traceback window lengths.
    • Wireless Tire Temperature Sensor Patch and System for Aircraft Landing Gear Testing

      Sulcs, Peter; Palmer, Carl; Naber, John; Jackson, Doug; Fuller, Lynn; Jones, Charles H.; Impact Technologies LLC; University of Louisville; Rochester Institute of Technology; Edwards Air Force Base (International Foundation for Telemetering, 2010-10)
      Testing aircraft brake and tire systems often results in tire temperatures that makes the aircraft unsafe to approach (due to explosion risk) for up to 45 minutes; this complicates cost effective test execution. This paper describes work on a wireless sensor system that measures multiple tire temperatures and transmits the data to someone at a safe distance (>300 ft). The solution consists of a sensor patch adhered directly to the tire which measures the tire temperature. The patch transmits these measurements to off-tire reader/relay nodes that subsequently sends the data to a system controller and display device.
    • Design and Analysis of a 3-D Gauss-Markov Model for Highly Dynamic Airborne Networks

      Sterbenz, James P. G.; Broyles, Dan; Jabbar, Abdul; University of Kansas (International Foundation for Telemetering, 2010-10)
      Accurate mobility models are needed to simulate the physical movement of nodes in a highly-dynamic aeronautical network. The fundamental problem with many synthetic mobility models is their random, memoryless behavior. Airborne ad hoc networks require a flexible memory-based 3-dimensional mobility model. We present a new 3-dimensional implementation of the Gauss-Markov mobility model for airborne telemetry network simulations, and compare its behavior to memoryless models such as random waypoint and random walk using the ns-3 simulator.
    • Channel Equalization and Spatial Diversity for Aeronautical Telemetry Applications

      Saquib, M.; Williams, Ian E.; University of Texas at Dallas (International Foundation for Telemetering, 2010-10)
      This work explores aeronautical telemetry communication performance with the SOQPSK- TG ARTM waveforms when frequency-selective multipath corrupts received information symbols. A multi-antenna equalization scheme is presented where each antenna's unique multipath channel is equalized using a pilot-aided optimal linear minimum mean-square error filter. Following independent channel equalization, a maximal ratio combining technique is used to generate a single receiver output for detection. This multi-antenna equalization process is shown to improve detection performance over maximal ratio combining alone.
    • On the Use of Rapid Prototyping for Designing PCM/FM Demodulators in FPGAS

      Rice, Michael; Nelson, Brent; Padilla, Marc; Havican, Jared; Brigham Young University (International Foundation for Telemetering, 2010-10)
      This paper describes the use of an efficient FPGA design flow, called Ogre, developed at BYU to design and implement PCM/FM demodulators. Ogre exploits the notion of reuse by taking advantage of a library of specially designed cores parameterized by XML metadata. A judicious choice of library cores, targeted to signal processing functions common to sampled data modulators and demodulators, reduces the design and test cycle time. We demonstrate this by using the tool to construct rapid prototypes of three different versions of FM demodulators and show that the bit error rate performance is comparable to demodulators on the market today.
    • A Mathematical Model for Instrumentation Configuration

      Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 2010-10)
      This paper describes a model of how to configure settings on instrumentation. For any given instrument there may be 100s of settings that can be set to various values. However, randomly selecting values for each setting is not likely to produce a valid configuration. By "valid" we mean a set of setting values that can be implemented by each instrument. The valid configurations must satisfy a set of dependency rules between the settings and other constraints. The formalization provided allows for identification of different sets of configurations settings under control by different systems and organizations. Similarly, different rule sets are identified. A primary application of this model is in the context of a multi-vendor system especially when including vendors that maintain proprietary rules governing their systems. This thus leads to a discussion of an application user interface (API) between different systems with different rules and settings.
    • Performance Analysis of iNET Using Forward Error Correction and OFDM

      Dean, Richard A.; Cole-Rhodes, Arlene; Boru, Sileshi; Maitra, Diptasree; Morgan State University (International Foundation for Telemetering, 2010-10)
      This paper shows the improvement in performance for OFDM modulation on aeronautical channels with the addition of convolution coding. OFDM is envisioned for use on the Integrated Network Enhanced Telemetry (INET) on aeronautical channels that experience multipath fading which causes inter-symbol interference (ISI). Forward error correction coding, such as convolution coding (cc), significantly improves the bit error rate (BER) of OFDM with multipath fading. Theoretical and simulated results show a performance increase of up to 10dB with the introduction of coding gain and the cyclic prefix (cp). Such improvements can be applied to reduce errors or increase data rates for INET.
    • A New Standard for Temperature Measurement in an Aviation Environment

      Grossman, Hy; Teletronics Technology Corporation (International Foundation for Telemetering, 2010-10)
      Accurate temperature measurement is an essential requirement in modern aircraft data acquisition systems. Both thermocouples and Platinum resistance temperature detectors (RTD) are used for this purpose with the latter being both more accurate and more repeatable. To ensure that only the sensor limits the accuracy of a temperature measurement, end-to-end system accuracy forward of the sensor, should be significantly greater than that of the sensor itself. This paper describes a new digital signal processing (DSP) based system for providing precision RTD based temperature measurements with laboratory accuracy in an aviation environment. Advantages of the new system include, true 3-wire RTD measurement, linear temperature output, on-board ultra-precision resistance standards and transparent dynamic calibration.
    • The Performance Evaluation of an OFDM-Based IP Transceiver at Eglin AFB

      Berard, Alfredo; Cook, Paul; Roach, John; Eglin Air Force Base; Teletronics Technology Corporation (International Foundation for Telemetering, 2010-10)
      The 46th Test Wing, 846th Test Support Squadron (846 TSS/TSI) at Eglin AFB is currently evaluating their airspace for the use of SOQPSK transmitters and receivers for telemetry. The Squadron will incorporate an IP-compatible OFDM transceiver from Teletronics Technology Corporation (TTC) that will provide a two-way communication channel for controlling configuration settings of the airborne SOQPSK transmitter and receiver. This provides an opportunity to evaluate the effectiveness of an airborne network instrumentation system and measure some critical parameters, with an opportunity to assess the performance and reliability of streaming telemetry and OFDM-based IP communication systems. This paper describes the experimental test setup created for this evaluation and summarizes the measurement and evaluation process.
    • A400M: Instrumentation Architecture for Flight Test

      Freaud, Gilles; Airbus (International Foundation for Telemetering, 2010-10)
      The Airbus A400M military transport plane carried out its first flight on December 2009 in Sevilla (Spain). This paper presents the flight and ground architecture designed to perform the flights tests campaign in Spain and in France. The core of the onboard flight test instrumentation is based on distributed network architecture already developed for A380 program. Airbus adapted civilian tests equipment for the A400M military program and various specific items have been designed specifically for this program. Two interconnected flight tests centres located in Sevilla (Spain) and Toulouse (France) are used for the flight tests campaign to ensure interoperability during the tests.
    • Aeronautical Channel Simulation in Network Simulators for Incorporation into OPNET

      Dean, Richard; Zhang, Tianyin; Jaber, Nur; Morgan State University (International Foundation for Telemetering, 2010-10)
      This paper discusses channel simulation using OPNET Modeler in support of iNET. It shows how wireless communication is simulated, how to simulate the special aeronautical channel of iNET, and how to deliver the aeronautical channel, test article, and ground station as reusable components for future simulation. Network simulation is a critical tool for iNET and it enables design decisions that cannot be made analytically due to the complexity of the problem. This work addresses the incorporation of the aeronautical channel into the OPNET Modeler tool set as this piece of iNET is unique and is not available in OPNET Modeler.
    • Situational Wireless Awareness Network

      Marcellin, Michael W.; Xin, Hao; Scheidemantel, Austin; Alnasser, Ibrahim; Carpenter, Benjamin; Frost, Paul; Nettles, Shivhan; Morales, Chelsie; University of Arizona (International Foundation for Telemetering, 2010-10)
      The purpose of this paper is to explain the process to implementing a wireless sensor network in order to improve situational awareness in a dense urban environment. Utilizing a system of wireless nodes with Global Positioning System (GPS) and heart rate sensors, a system was created that was able to give both position and general health conditions. By linking the nodes in a mesh network line of sight barriers were overcome to allow for operation even in an environment full of obstruction.
    • Compressed Sensing Using Reed-Solomon and Q-Ary LDPC Codes

      Ryan, William E.; Marcellin, Michael W.; Goodman, Nathan A.; Jagiello, Kristin M.; University of Arizona (International Foundation for Telemetering, 2010-10)
      We consider the use of Reed-Solomon (RS) and q-ary LDPC codes for compressed sensing of sparse signals. Signals sensed using the RS parity-check matrix are recovered using Berlekamp-Massey and those sensed using the LDPC parity-check matrix are recovered using majority-logic decoding. Results are presented for both types of sensing. In addition, a hardware architecture is discussed.
    • Network System Integration: Migrating Legacy Systems into Network-Based Architectures

      Newton, Todd A.; Moodie, Myron L.; Thibodeaux, Ryan J.; Araujo, Maria S.; Southwest Research Institute (International Foundation for Telemetering, 2010-10)
      The direction of future data acquisition systems is rapidly moving toward a network-based architecture. There is a handful of these network-based flight test systems already operating, and the current trend is catching on all over the flight test community. As vendors are churning out a whole new product line for networking capabilities, system engineers are left asking, "What do I do with all of this non-networked, legacy equipment?" Before overhauling an entire test system, one should look for a way to incorporate the legacy system components into the modern network architecture. Finding a way to integrate the two generations of systems can provide substantial savings in both cost and application development time. This paper discusses the advantages of integrating legacy equipment into a network-based architecture with examples from systems where this approach was utilized.
    • IHAL and Web Service Interfaces to Vendor Configuration Engines

      Hamilton, John; Darr, Timothy; Fernandes, Ronald; Sulewski, Joe; Jones, Charles; Knowledge Based Systems, Inc.; L-3 Telemetry East; Edwards Air Force Base (International Foundation for Telemetering, 2010-10)
      In this paper, we present an approach towards achieving standards-based multi-vendor hardware configuration. This approach uses the Instrumentation Hardware Abstraction Language (IHAL) and a standardized web service Application Programming Interface (API) specification to allow any Instrumentation Support System (ISS) to control instrumentation hardware in a vendor neutral way without requiring non-disclosure agreements or knowledge of proprietary information. Additionally, we will describe a real-world implementation of this approach using KBSI‟s InstrumentMap application and an implementation of the web service API by L-3 Communications Telemetry East.
    • A Hybrid Data Acquisition Architecture on the CH-53K Program

      Dehmelt, Chris; L3 Communications Telemetry East (International Foundation for Telemetering, 2010-10)
      As today's flight test programs need for sensor and bus data continue to increase, there has been associated requirements to provide modern system output products and support higher encoder data rates. The CH-53K Heavy Lift Replacement (HLR) Program is an example in which the instrumentation data requirements have increased significantly over previous helicopter programs and necessitated the introduction of new technologies and capabilities. The CH-53K Program utilizes a hybrid system architecture that combines the benefits of legacy PCM and modern networked system architectures. The system provides for maintaining the required system-wide synchronized sampling capabilities, while providing real-time data access and system control over a vehicle network. Serial Streaming Telemetry (SST)-to-vNET Adapters are employed to enable many of these capabilities. This paper describes the instrumentation requirements for the CH-53K program and the features, tools and performance of its data acquisition system - which addressed all requirements while minimizing the overall impact to the existing instrumentation infrastructure.
    • Reduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channels

      Saquib, Mohammad; Kannappa, Sandeep Mavuduru; University of Texas at Dallas (International Foundation for Telemetering, 2010-10)
      High data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.
    • Mixed Network Clustering with Multiple Ground Stations and Nodes Preferences

      Dean, Richard; Traore, Oumar; Gwanvoma, Stephen; Morgan State University (International Foundation for Telemetering, 2010-10)
      This paper presents a method for managing a Mixed Network with multiple ground stations and Test Articles (TA) preferences. The main difference between a Ground Station (cellular) network and the over the horizon (ad-hoc) network is that the ad-hoc method has no fixed infrastructure. This paper presents the computation and performance of a clustering technique for mobile nodes within the simulated mixed network environment with multiple ground stations and users preferences for those ground stations. This includes organization for multiple ground stations and for TA's gravitating toward a ground station of their choice on the basis of service and performance.
    • Mixed Network Interference Management with Multi-Distortion Measures

      Dean, Richard; Traore, Abdoulaye S.; Morgan State University (International Foundation for Telemetering, 2010-10)
      This paper presents a methodology for the management of interference and spectrum for iNET. It anticipates a need for heavily loaded test environments with Test Articles (TAs) operating over the horizon. In such cases, it is anticipated that fixed and ad hoc networks will be employed, and where spectrum reuse and interference will limit performance. The methodology presented here demonstrates how this can be accomplished in mixed networks.