Cosmic Structure Formation: From First Star to Large-scale Filamentary Structure

Persistent Link:
http://hdl.handle.net/10150/578387
Title:
Cosmic Structure Formation: From First Star to Large-scale Filamentary Structure
Author:
Cai, Zheng
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Theory of cosmic structure formation outlines how stars, galaxies, clusters of galaxies, and large-scale structures formed out of primordial density fluctuations. It presents us a picture of cosmic mass assembly, and places strong constraints on cosmological model. Both observations and theories suggest that structures formation follows a "bottom up" process, in which small, low-mass component form first, and gradually develop into larger, more massive systems. This dissertation focuses on three crucial stages of cosmic structure formation: first generation stars, quasar host galaxies and the large-scale galaxy overdensities. In Chapter 1, I present an overview of structure formation, acquainting readers with a general picture from first object in the Universe to large-scale structures at later epochs. In Chapter 2 and Chapter 3, I derive strong constraints to the star formation rates (SFRs) of very massive Population III (Pop III) stars in two high redshift galaxies at z = 7. By probing the He II emission lines for both galaxies, I conclude that the contributions of very massive Pop III stars to total the SFRs are less than 3%. In Chapter 4, I move to more massive systems, quasar host galaxies at z ~ 3. Using damped Lyman alpha absorption systems as natural coronagraphs, I report that rest-frame far-UV emission of quasar host galaxy correlates strongly with quasar luminosity. This result suggests a co-evolution of supermassive black holes and their host galaxies. In Chapter 5, I develop a novel method for searching the most massive protoclusters at z = 2-3, by utilizing intergalactic Lyman alpha absorption. My investigations suggest that large intergalactic Lyman alpha absorption systems effectively trace the most overdense regions at large scale of ~ 15 h⁻¹ Mpc. In Chapter 6, I present our imaging observations of an extreme galaxy overdensity (protocluster) BOSS1441+4000, which is discovered using the techniques developed in Chapter 5. Furthermore, I report an intergalactic-scale Lyman alpha nebula detected at the density peak of BOSS1441+4000. This discovery, together with previously discovered Slug nebula, provide us a first look of intergalactic medium in emission in the early Universe. In the Chapter 7, I give a summary of this dissertation and discuss several future prospects.
Type:
text; Electronic Dissertation
Keywords:
Cosmology; Galaxy; Galaxy Protocluster; Intergalactic Medium; Physics; Cluster of Galaxy
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Fan, Xiaohui

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCosmic Structure Formation: From First Star to Large-scale Filamentary Structureen_US
dc.creatorCai, Zhengen
dc.contributor.authorCai, Zhengen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractTheory of cosmic structure formation outlines how stars, galaxies, clusters of galaxies, and large-scale structures formed out of primordial density fluctuations. It presents us a picture of cosmic mass assembly, and places strong constraints on cosmological model. Both observations and theories suggest that structures formation follows a "bottom up" process, in which small, low-mass component form first, and gradually develop into larger, more massive systems. This dissertation focuses on three crucial stages of cosmic structure formation: first generation stars, quasar host galaxies and the large-scale galaxy overdensities. In Chapter 1, I present an overview of structure formation, acquainting readers with a general picture from first object in the Universe to large-scale structures at later epochs. In Chapter 2 and Chapter 3, I derive strong constraints to the star formation rates (SFRs) of very massive Population III (Pop III) stars in two high redshift galaxies at z = 7. By probing the He II emission lines for both galaxies, I conclude that the contributions of very massive Pop III stars to total the SFRs are less than 3%. In Chapter 4, I move to more massive systems, quasar host galaxies at z ~ 3. Using damped Lyman alpha absorption systems as natural coronagraphs, I report that rest-frame far-UV emission of quasar host galaxy correlates strongly with quasar luminosity. This result suggests a co-evolution of supermassive black holes and their host galaxies. In Chapter 5, I develop a novel method for searching the most massive protoclusters at z = 2-3, by utilizing intergalactic Lyman alpha absorption. My investigations suggest that large intergalactic Lyman alpha absorption systems effectively trace the most overdense regions at large scale of ~ 15 h⁻¹ Mpc. In Chapter 6, I present our imaging observations of an extreme galaxy overdensity (protocluster) BOSS1441+4000, which is discovered using the techniques developed in Chapter 5. Furthermore, I report an intergalactic-scale Lyman alpha nebula detected at the density peak of BOSS1441+4000. This discovery, together with previously discovered Slug nebula, provide us a first look of intergalactic medium in emission in the early Universe. In the Chapter 7, I give a summary of this dissertation and discuss several future prospects.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectCosmologyen
dc.subjectGalaxyen
dc.subjectGalaxy Protoclusteren
dc.subjectIntergalactic Mediumen
dc.subjectPhysicsen
dc.subjectCluster of Galaxyen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorFan, Xiaohuien
dc.contributor.committeememberFan, Xiaohuien
dc.contributor.committeememberOzel, Feryalen
dc.contributor.committeememberPsaltis, Dimitriosen
dc.contributor.committeememberRozo, Eduardoen
dc.contributor.committeememberSu, Shufangen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.