Persistent Link:
http://hdl.handle.net/10150/577502
Title:
Energy Efficient Water-Filling Algorithm for MIMO-OFDMA Cellular System
Author:
Kassa, Hailu Belay; Mariam, Dereje H.; Moazzami, Farzad; Astatke, Yacob
Affiliation:
Addis Ababa University; Morgan State University
Issue Date:
2014-10
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
In this work we evaluated the performance of different water filling algorithms. We have selected four power allocation algorithms: Conventional water-filling (CWF), Constant power water-filling, Inverse Water-filling (IWF), and Adaptive Iterative Water-Filling (AIWF) algorithms. Capacity is the performance metric we used to compare the above algorithms by taking the optimality of transmission power allocation to each sub-channel into account. The power allocation can be calculated with a reference of the water level value that has different approaches for different algorithms. The water level can either be fixed once it is found, or it may be adaptive or different for different sub-channels. Hence, the results show that the adaptive iterative water filling (AIWF) algorithm has a better effect on the performance of MIMO-OFDM system by allocating power adaptively.
Keywords:
water filling algorithms; capacity; power allocation
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleEnergy Efficient Water-Filling Algorithm for MIMO-OFDMA Cellular Systemen_US
dc.contributor.authorKassa, Hailu Belayen
dc.contributor.authorMariam, Dereje H.en
dc.contributor.authorMoazzami, Farzaden
dc.contributor.authorAstatke, Yacoben
dc.contributor.departmentAddis Ababa Universityen
dc.contributor.departmentMorgan State Universityen
dc.date.issued2014-10en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractIn this work we evaluated the performance of different water filling algorithms. We have selected four power allocation algorithms: Conventional water-filling (CWF), Constant power water-filling, Inverse Water-filling (IWF), and Adaptive Iterative Water-Filling (AIWF) algorithms. Capacity is the performance metric we used to compare the above algorithms by taking the optimality of transmission power allocation to each sub-channel into account. The power allocation can be calculated with a reference of the water level value that has different approaches for different algorithms. The water level can either be fixed once it is found, or it may be adaptive or different for different sub-channels. Hence, the results show that the adaptive iterative water filling (AIWF) algorithm has a better effect on the performance of MIMO-OFDM system by allocating power adaptively.en
dc.subjectwater filling algorithmsen
dc.subjectcapacityen
dc.subjectpower allocationen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/577502en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.