Collective Migration Models: Dynamic Monitoring of Leader Cells in Migratory/Invasive Disease Processes

Persistent Link:
http://hdl.handle.net/10150/560817
Title:
Collective Migration Models: Dynamic Monitoring of Leader Cells in Migratory/Invasive Disease Processes
Author:
Dean, Zachary S.
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological process in multiple cell types and diseases.
Type:
text; Electronic Dissertation
Keywords:
cancer; fluorescence; Leader cell; miRNA; wound healing; Biomedical Engineering; 3D cell culture
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Biomedical Engineering
Degree Grantor:
University of Arizona
Advisor:
Wong, Pak Kin

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleCollective Migration Models: Dynamic Monitoring of Leader Cells in Migratory/Invasive Disease Processesen_US
dc.creatorDean, Zachary S.en
dc.contributor.authorDean, Zachary S.en
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractLeader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological process in multiple cell types and diseases.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectcanceren
dc.subjectfluorescenceen
dc.subjectLeader cellen
dc.subjectmiRNAen
dc.subjectwound healingen
dc.subjectBiomedical Engineeringen
dc.subject3D cell cultureen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineBiomedical Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorWong, Pak Kinen
dc.contributor.committeememberKonhilas, Johnen
dc.contributor.committeememberSlepian, Marvinen
dc.contributor.committeememberUtzinger, Ursen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.