Estrogen Dependent Regulation of the Amp-Activated Protein Kinase Pathway

Persistent Link:
http://hdl.handle.net/10150/556852
Title:
Estrogen Dependent Regulation of the Amp-Activated Protein Kinase Pathway
Author:
Lipovka, Yulia
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 16-May-2016
Abstract:
Sex differences exist in the progression of heart disease, as premenopausal women are protected from developing severe hypertension, aortic stenosis, myocardial infarction and hypertrophic cardiomyopathies. The susceptibility and progression of cardiovascular disease increases in post-menopausal women. This is at least partially underlined by a pronounced decrease in circulating estrogen levels. Estradiol (E2), the most abundant estrogen in premenopausal women, is known to be cardioprotective. Recently, AMP-activated protein kinase (AMPK) has emerged as a prominent player in the development of cardiac hypertrophy and heart failure. AMPK is central to the energetic metabolism of the cell and is activated in response to energy deprivation. E2 has been shown to activate AMPK, by yet an unknown mechanism. The first part of this dissertation focuses on describing the molecular mechanism behind this AMPK activation. We found that E2 activates AMPK through a non- genomic pathway and involves direct interaction of classical estrogen receptors (ERα and ERβ) with the α-catalytic subunit of AMPK. These receptors also associate with the upstream kinase LKB1, which is required for E2-dependent activation of AMPK. Furthermore, the two estrogen receptors play opposite roles, where ERα increases AMPK activation, and ERβ acts as a repressor, inhibiting AMPK phosphorylation. To translate our findings to heart disease, the next step was to determine the effect of ovarian failure, underlined by E2 loss, on AMPK signaling during the progression of cardiac hypertrophy. We hypothesized that ovarian failure decreases cardiac AMPK signaling, translating in worsening of hypertrophy. We found that the status of cardiac AMPK signaling depends on the nature of the hypertrophic stimulus and the timing of ovarian failure in relation to the onset of hypertrophy. Furthermore, we did not detect any differences in the development of cardiac hypertrophy between wild type mice and mice in ovarian failure, which most likely occur down the line. In summary we described a novel mechanism of AMPK activation by the hormone E2. We also explored the effect of estrogen loss on cardiac AMPK activity, and found that it is dependent on factors such as the pathological state of the heart and timing of the intervention. These findings add to our understanding of the molecular mechanisms behind sex differences in energy handling and in the future could be translated into better therapeutics for the treatment of cardiac pathologies.
Type:
text; Electronic Dissertation
Keywords:
Breast cancer; Estradiol; Estrogen; Estrogen receptors; VCD; Molecular & Cellular Biology; AMPK
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Molecular & Cellular Biology
Degree Grantor:
University of Arizona
Advisor:
Konhilas, John P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleEstrogen Dependent Regulation of the Amp-Activated Protein Kinase Pathwayen_US
dc.creatorLipovka, Yuliaen
dc.contributor.authorLipovka, Yuliaen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease after 16-May-2016en
dc.description.abstractSex differences exist in the progression of heart disease, as premenopausal women are protected from developing severe hypertension, aortic stenosis, myocardial infarction and hypertrophic cardiomyopathies. The susceptibility and progression of cardiovascular disease increases in post-menopausal women. This is at least partially underlined by a pronounced decrease in circulating estrogen levels. Estradiol (E2), the most abundant estrogen in premenopausal women, is known to be cardioprotective. Recently, AMP-activated protein kinase (AMPK) has emerged as a prominent player in the development of cardiac hypertrophy and heart failure. AMPK is central to the energetic metabolism of the cell and is activated in response to energy deprivation. E2 has been shown to activate AMPK, by yet an unknown mechanism. The first part of this dissertation focuses on describing the molecular mechanism behind this AMPK activation. We found that E2 activates AMPK through a non- genomic pathway and involves direct interaction of classical estrogen receptors (ERα and ERβ) with the α-catalytic subunit of AMPK. These receptors also associate with the upstream kinase LKB1, which is required for E2-dependent activation of AMPK. Furthermore, the two estrogen receptors play opposite roles, where ERα increases AMPK activation, and ERβ acts as a repressor, inhibiting AMPK phosphorylation. To translate our findings to heart disease, the next step was to determine the effect of ovarian failure, underlined by E2 loss, on AMPK signaling during the progression of cardiac hypertrophy. We hypothesized that ovarian failure decreases cardiac AMPK signaling, translating in worsening of hypertrophy. We found that the status of cardiac AMPK signaling depends on the nature of the hypertrophic stimulus and the timing of ovarian failure in relation to the onset of hypertrophy. Furthermore, we did not detect any differences in the development of cardiac hypertrophy between wild type mice and mice in ovarian failure, which most likely occur down the line. In summary we described a novel mechanism of AMPK activation by the hormone E2. We also explored the effect of estrogen loss on cardiac AMPK activity, and found that it is dependent on factors such as the pathological state of the heart and timing of the intervention. These findings add to our understanding of the molecular mechanisms behind sex differences in energy handling and in the future could be translated into better therapeutics for the treatment of cardiac pathologies.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectBreast canceren
dc.subjectEstradiolen
dc.subjectEstrogenen
dc.subjectEstrogen receptorsen
dc.subjectVCDen
dc.subjectMolecular & Cellular Biologyen
dc.subjectAMPKen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineMolecular & Cellular Biologyen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorKonhilas, John P.en
dc.contributor.committeememberBrooks, Heddwenen
dc.contributor.committeememberElfring, Lisaen
dc.contributor.committeememberDoetschman, Thomasen
dc.contributor.committeememberTsao, Tsu-Shuenen
dc.contributor.committeememberKonhilas, John P.en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.