Analysis and Application of Opto-Mechanics to the Etiology of Sub-Optimal Outcomes in Laser Corrective Eye Surgery and Design Methodology of Deformable Surface Accommodating Intraocular Lenses

Persistent Link:
http://hdl.handle.net/10150/556806
Title:
Analysis and Application of Opto-Mechanics to the Etiology of Sub-Optimal Outcomes in Laser Corrective Eye Surgery and Design Methodology of Deformable Surface Accommodating Intraocular Lenses
Author:
Mccafferty, Sean Joseph
Issue Date:
2015
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Overview: Optical concepts as they relate to the ophthalmologic correction of vision in corneal laser vision correction and intraocular lens design was examined. Purpose: The interaction between the excimer laser and residual corneal tissue in laser vision correction produces unwanted side effects. Understanding the origin of these artifacts can lead to better procedures. Furthermore, accommodating intraocular lenses offer a potential for eliminating presbyopia. Understanding the properties of a new accommodating intraocular lens incorporating a deformable interface may lead to advances in cataract surgery. Introduction: Corneal surface irregularities following laser refractive procedures are commonly seen. They regularly result in a patient’s decreased best corrected visual acuity and decreased contrast sensitivity. These changes are only seen in biologic tissue and the etiology has been elusive. A thermal response has been theorized and was investigated in this research. In addition, intraocular lenses using a mechanically deforming interface to change their power in order to duplicate natural accommodation have been developed. The deforming interface(s) induce optical aberrations due to irregular deformations. Design efforts have centered on minimizing these deformations. Both of the ophthalmic applications have been analyzed using finite element analysis (FEA) to understand their inherent optical properties. Methods: FEA modeling of thermal theory has been applied to verify that excimer laser induced collagen contraction creates corneal surface irregularities and central islands. A mathematical model which indicates the viability of the theory was developed. The modeling results were compared to post ablation changes in eyes utilizing an excimer (ArF 193 nm), as well as non-ablative thermal heating in eyes with a CO₂ laser. Addition modeling was performed on an Intraocular lens prototype measuring of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were utilized to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force. Results: The predictive model shows significant irregular central buckling formation and irregular folding. The amount of collagen contraction necessary to cause significant surface changes is very small (0.3%). Uniform scanning excimer laser ablation to corneal stroma produces a significant central steepening and peripheral flattening in the central 3mm diameter. Isolated thermal load from uniform CO₂ laser irradiation without ablation also produces central corneal steepening and paracentral flattening in the central 3mm diameter. The iterative mathematical modeling based upon the intraocular lens prototype yielded maximized optical and mechanical performance through varied input mechanical and optical parameters to produce a maximized visual Strehl ratio and a minimized force requirement. Conclusions: The thermal load created by laser irradiation creates a characteristic spectrum of morphologic changes on the porcine corneal stromal surface which correlates to the temperature rise and is not seen inorganic, isotropic material. The highly similar surface changes seen with both lasers are likely indicative of temperature induced transverse collagen fibril contraction and stress re-distribution. Refractive procedures which produce significant thermal load should be cognizant of these morphological changes. The optimized intraocular lens operates within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye’s natural focusing feedback, while maintaining image quality in the space available. Optimized optical and mechanical performance parameters were delineated as those which minimize both asphericity and actuation pressure. The methodology combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary trials.
Type:
text; Electronic Thesis
Keywords:
Intraocular implant; lasik; ophthalmology; refractive surgery; thermal load; Optical Sciences; cataract surgery
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Schwiegerling, Jim T.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAnalysis and Application of Opto-Mechanics to the Etiology of Sub-Optimal Outcomes in Laser Corrective Eye Surgery and Design Methodology of Deformable Surface Accommodating Intraocular Lensesen_US
dc.creatorMccafferty, Sean Josephen
dc.contributor.authorMccafferty, Sean Josephen
dc.date.issued2015en
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractOverview: Optical concepts as they relate to the ophthalmologic correction of vision in corneal laser vision correction and intraocular lens design was examined. Purpose: The interaction between the excimer laser and residual corneal tissue in laser vision correction produces unwanted side effects. Understanding the origin of these artifacts can lead to better procedures. Furthermore, accommodating intraocular lenses offer a potential for eliminating presbyopia. Understanding the properties of a new accommodating intraocular lens incorporating a deformable interface may lead to advances in cataract surgery. Introduction: Corneal surface irregularities following laser refractive procedures are commonly seen. They regularly result in a patient’s decreased best corrected visual acuity and decreased contrast sensitivity. These changes are only seen in biologic tissue and the etiology has been elusive. A thermal response has been theorized and was investigated in this research. In addition, intraocular lenses using a mechanically deforming interface to change their power in order to duplicate natural accommodation have been developed. The deforming interface(s) induce optical aberrations due to irregular deformations. Design efforts have centered on minimizing these deformations. Both of the ophthalmic applications have been analyzed using finite element analysis (FEA) to understand their inherent optical properties. Methods: FEA modeling of thermal theory has been applied to verify that excimer laser induced collagen contraction creates corneal surface irregularities and central islands. A mathematical model which indicates the viability of the theory was developed. The modeling results were compared to post ablation changes in eyes utilizing an excimer (ArF 193 nm), as well as non-ablative thermal heating in eyes with a CO₂ laser. Addition modeling was performed on an Intraocular lens prototype measuring of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were utilized to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force. Results: The predictive model shows significant irregular central buckling formation and irregular folding. The amount of collagen contraction necessary to cause significant surface changes is very small (0.3%). Uniform scanning excimer laser ablation to corneal stroma produces a significant central steepening and peripheral flattening in the central 3mm diameter. Isolated thermal load from uniform CO₂ laser irradiation without ablation also produces central corneal steepening and paracentral flattening in the central 3mm diameter. The iterative mathematical modeling based upon the intraocular lens prototype yielded maximized optical and mechanical performance through varied input mechanical and optical parameters to produce a maximized visual Strehl ratio and a minimized force requirement. Conclusions: The thermal load created by laser irradiation creates a characteristic spectrum of morphologic changes on the porcine corneal stromal surface which correlates to the temperature rise and is not seen inorganic, isotropic material. The highly similar surface changes seen with both lasers are likely indicative of temperature induced transverse collagen fibril contraction and stress re-distribution. Refractive procedures which produce significant thermal load should be cognizant of these morphological changes. The optimized intraocular lens operates within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye’s natural focusing feedback, while maintaining image quality in the space available. Optimized optical and mechanical performance parameters were delineated as those which minimize both asphericity and actuation pressure. The methodology combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary trials.en
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectIntraocular implanten
dc.subjectlasiken
dc.subjectophthalmologyen
dc.subjectrefractive surgeryen
dc.subjectthermal loaden
dc.subjectOptical Sciencesen
dc.subjectcataract surgeryen
thesis.degree.nameM.S.en
thesis.degree.levelmastersen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorSchwiegerling, Jim T.en
dc.contributor.committeememberKoch, Thomas L.en
dc.contributor.committeememberWyant, Jimen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.